PD-MINIMAL SOLUTIONS OF $\Delta u = Pu$ ON OPEN RIEHMANN SURFACES

WELLINGTON H. OW

Abstract. By means of the Royden compactification of an open Riemann surface R necessary and sufficient conditions are given for a Dirichlet-finite solution of $\Delta u = Pu \ (P \geq 0, \ P \neq 0)$ to be PD-minimal on R. A relation between PD-minimal solutions and HD-minimal solutions is obtained. In addition it is shown that the dimension of the space of PD-solutions is the same as the number of P-energy nondensity points in the finite dimensional case.

Let $P(z) \, dx \, dy \ (z = x + iy), \ P \neq 0$, be a nonnegative C^1 differential on an open Riemann surface R. Denote by $PD(R)$ the Hilbert space of all Dirichlet-finite solutions of the second-order selfadjoint elliptic partial differential equation

$$\Delta u(z) = P(z)u(z)$$

on R where $\Delta u(z) \, dx \, dy = d^* \, du(z)$. The scalar product is given by $(u, v) = D_R(u, v) = \int_R du \wedge \ast dv$, not the energy integral $E_R(u, v) = D_R(u, v) + \int_R P^2 uv$. Observe that the only constant solution of $\Delta u = Pu$ is the identically zero solution. The classification problem with respect to $\Delta u = Pu$ was initiated by Ozawa [9] who investigated the class $PE(R)$ of energy-finite solutions of (1) on R. The class $PD(R)$ itself was first considered by Royden [10] in 1959. A little later the works of Nakai ([5], [6]) gave impetus to the theory of the class $PD(R)$. Recent contributions to the study of $PD(R)$ are contained in papers by Nakai ([7], [8]), Glasner-Katz [2], and Singer ([12], [13]).

The energy integral $E_R(u) = E_R(u, u)$ plays the same role as the Dirichlet integral $D_R(u) = D_R(u, u)$ in the harmonic case, i.e. solutions of $\Delta u = 0$, and the class $PE(R)$ likewise shares many properties possessed by the class $HD(R)$ of Dirichlet-finite harmonic functions (see, for example, Ozawa [9], Glasner-Katz [2], Kwon-Sario-Schiff ([3], [4])). However, the class $PD(R)$ is quite different in nature from $HD(R)$. Nevertheless it does share...
some common properties with \(HD(R)\). For example, Nakai [8] has shown recently that the Virtanen identity \(O_{\text{HD}}=O_{\text{HBD}}\) is also valid for \(PD(R)\); namely, \(O_{\text{PD}}=O_{\text{PD}}\), where \(PB(D(R))\) is the class of bounded \(PD\)-functions on \(R\).

The purpose of this paper is to give a necessary and sufficient condition for a \(PD\)-function to be \(PD\)-minimal. Although the statement itself is similar to that for \(HD\)-functions new techniques are required for the proofs. The most important tool used is the Royden harmonic boundary and in particular the subset \(\Delta_p\) of \(P\)-energy nondensity points introduced by Nakai [7]. Further we give a relationship between \(HD\)-minimality and \(PD\)-minimality. Finally we also state a relation between the cardinality of \(\Delta_p\) and the dimension of \(PD(R)\) whenever the latter is finite. For the reader’s convenience we shall briefly review some preliminaries in §1.

1. Let \(R^\ast\) be the Royden compactification of \(R\) (for details see e.g. Sario-Nakai [11]). Denote by \(\Gamma = R^\ast - R\) the Royden boundary of \(R\) and by \(\Delta = \Delta_R\) the Royden harmonic boundary of \(R\), consisting of points of \(\Gamma\) which are regular for the harmonic Dirichlet problem. A point \(Z^\ast\) in \(\Delta\) will be called a \(P\)-energy nondensity point (cf. [7]) if there exists an open neighborhood \(U^\ast\) of \(Z^\ast\) in \(R^\ast\) such that

\[
\int_{U \times U} G_{U}(z, \zeta)P(z)P(\xi)\, dx\, dy\, d\xi\, d\eta < \infty \quad (\zeta = \xi + i\eta)
\]

for \(z \in U\), where \(U = U^\ast \cap R\) and \(G_{U}\) is the harmonic Green’s function of \(U\).

2. If \(R\) is parabolic then \(PD(R) = \{0\}\) (cf. Royden [10]). We therefore assume throughout the paper that \(R\) is hyperbolic. Denote by \(\hat{M}(R)\) the class of all Dirichlet-finite Tonelli functions on \(R\) and by \(\hat{M}_\Delta(R)\) the subclass of \(\hat{M}(R)\) consisting of functions \(g\) such that \(g|_{\Delta} = 0\). We then have the orthogonal decomposition (cf. [11]):

\[
\hat{M}(R) = HD(R) + \hat{M}_\Delta(R).
\]

The subset \(M(R)\) consisting of all bounded members of \(\hat{M}(R)\) is called the Royden algebra of \(R\). It is known that \(M(R)\) is closed under the lattice operations \(f \cup g = \max(f, g)\), and \(f \cap g = \min(f, g)\). Moreover \(M(R)\) has the orthogonal decomposition

\[
M(R) = HB(D(R) + M_{\Delta}(R),
\]

where \(HB(D(R)\) is the class of bounded harmonic functions on \(R\) and \(M_{\Delta}(R)\) the subclass of \(M(R)\) consisting of functions \(g\) with \(g|_{\Delta} = 0\).

For each \(f \in \hat{M}(R)\) we denote by \(\Pi_R f \in HD(R)\) the harmonic projection of \(f\) on \(R\) characterized by \(f - \Pi_R f \in \hat{M}_\Delta(R)\). Since \(PD(R) \subseteq \hat{M}(R)\) we may
define the operator

\[\Pi_R \mid PD(R) : PD(R) \to HD(R) \]

which is a vector space isomorphism from \(PD(R) \) onto \(\Pi_R(PD(R)) \) such that \(u > 0 \) is equivalent to \(\Pi_R u > 0 \) and

\[\sup_R |u| = \sup_R |\Pi_R u| \quad (\text{cf. } [12]). \]

Moreover it can be shown that if \(u \in PD(R) \) then

\[u = \Pi_R u + T_R u \]

where

\[T_R u = -\frac{1}{2\pi} \int_R G_R(\cdot, \zeta)P(\zeta)u(\zeta) \, d\zeta \, d\eta \quad (\zeta = \xi + i\eta) \]

and also

\[D_R(u) = D_R(\Pi_R u) + \frac{1}{2\pi} \int_{R \times R} G_R(z, \zeta)u(z)u(\zeta)P(z)P(\zeta) \, dx \, dy \, d\xi \, d\eta \]

(cf. [8]). If \(\Omega \) is an open subset of \(R \) with smooth relative boundary \(\partial \Omega \) (which may be empty in case \(\Omega = R \)) then for \(u \in PD(\Omega) \) we obtain representations for \(u \) and \(D_{\Omega}(u) \) as in (5), (6). Moreover

\[T_{\Omega} u \mid (\partial \Omega) \cup (\bar{\Omega} \cap \Delta) = 0, \]

where \(\bar{\Omega} \) is the closure of \(\Omega \) in \(R^* \).

The following is an immediate consequence of the maximum principle for \(PD(R) \) (cf. Glasner-Katz [2]):

Lemma 1. If \(u \in PD(R) \) and \(u|\Delta = 0 \) then \(u \equiv 0 \).

3. Recall that \(\Delta_p \) is the set of \(P \)-energy nondensity points of \(\Delta \). Now we state (cf. Nakai [7]):

Lemma 2. If \(u \in PD(R) \) then \(u|\Delta - \Delta_p = 0 \).

Proof. Let \(Z_0 \in \Delta - \Delta_p \). Then for each neighborhood \(U^* \) of \(Z_0 \) in \(R^* \),

\[\int_{U^* \times U} G_U(z, \zeta)P(z)P(\zeta) \, dx \, dy \, d\xi \, d\eta = \infty, \]

\(U = U^* \cap R \). Suppose to the contrary that \(u(Z_0) \neq 0 \). Since each \(u \in PD(R) \) possesses a Riesz decomposition (cf. [8]) as the difference of two non-negative \(PD \)-functions on \(R \) we may assume that \(\bar{u} \geq 0 \) and \(u(Z_0) > 0 \). Since \(u \) is continuous at \(z_0 \) there exists a neighborhood \(U^* \) of \(Z_0 \) in \(R^* \) such that
\(u \geq \delta > 0 \) in \(U^* \). But from (6) and the fact that \(D_U(u) \leq D_R(u) < \infty \) \((U = U^* \cap R)\) we have
\[
D_U(u) = D_U(\Pi_U u) + \frac{1}{2\pi} \int_{U \times U} G_U(z, \zeta) u(z) u(\zeta) P(z) P(\zeta) < \infty,
\]
which is impossible. Hence \(u(Z_0) = 0 \) as asserted.

Corollary 1. If \(u \in PD(R) \) and \(u|_{\Delta_p} = 0 \) then \(u \equiv 0 \).

The proof follows immediately from Lemmas 1 and 2.

4. A positive \(PD \)-function \(u \) on \(R \) which is not identically zero will be called \(PD \)-minimal if for any \(v \in PD(R) \) such that \(0 \leq v \leq u \) there exists a constant \(c_v \) such that \(v = c_v u \) on \(R \) (for \(HD \)-minimal functions see Sario-Nakai [11]).

In contrast to \(HD \)-minimality which is characterized in terms of the entire harmonic boundary \(\Delta \), \(PD \)-minimality is stated solely in terms of \(\Delta_p \) as follows:

Theorem 1. A \(PD \)-function on \(R \) is \(PD \)-minimal if and only if there exists an isolated point \(Z_0 \in \Delta_p \) such that \(0 < u(Z_0) \) and \(u = 0 \) on \(\Delta_p - \{Z_0\} \).

Proof. We first establish the sufficiency. Since \(\Delta = \Delta_p \cup (\Delta - \Delta_p) \) it follows from the hypothesis and Lemma 2 that \(u|\Delta - \{Z_0\} = 0 \). Now \(\Pi_R u \in HD(R) \) by (3) and from (7) we deduce that \(\Pi_R u(Z_0) = u(Z_0) > 0 \) and \(\Pi_R u = 0 \) on \(\Delta - \{Z_0\} \). Hence \(\Pi_R u \) is \(HD \)-minimal, and in particular strictly positive and bounded (cf. [11]). From (4) it follows that \(u \) is bounded. For any \(v \in PD(R) \) with \(0 \leq v \leq u \) on \(R \) it follows from the continuity of \(PD \)-functions on \(\Delta \) that \(v = 0 \) on \(\Delta - \{Z_0\} \) and \(0 \leq v(Z_0) < \infty \). Hence \(c_v u - v = 0 \) on \(\Delta \) where \(c_v = v(Z_0)/u(Z_0) \). By Lemma 1, \(v = c_v u \) on \(R \) and \(u \) is \(PD \)-minimal as was to be shown.

Conversely, assume that \(u \) is \(PD \)-minimal. Since \(u \neq 0 \) by Corollary 1 there exists a point \(Z_0 \in \Delta_p \) such that \(u(Z_0) > 0 \). There exists a neighborhood \(U^* \) of \(Z_0 \) as in (2). Suppose \(Z_0 \) is not an isolated point of \(\Delta_p \). Then consider any \(Z_1 \in \Delta_p \cap U^* \) with \(Z_1 \neq Z_0 \). We claim that \(u(Z_1) = 0 \). Suppose to the contrary that \(u(Z_1) > 0 \). Note that we may assume that \(\partial U \) \((U = U^* \cap R)\) is smooth to begin with since we may modify \(U \) suitably otherwise. Select an \(f \in M(U) \) such that \(f(Z_0) = 1 \), \(f(Z_1) = 0 \), \(f|\partial U = 0 \), and \(0 \leq f \leq 1 \) on \(U^* \). Here \(M(U) \) is the Royden algebra of bounded Dirichlet-finite Tonelli functions on \(U \). Then \(h = \Pi_U (f \wedge u) \in HBD(U) \), \(0 \leq h \leq u \) on \(U^* \), \(h|\partial U = 0 \), \(h(Z_0) = 0 \), and \(h(Z_0) = (f \wedge u)Z_0 \). Using the approach of Nakai [7] we now construct an appropriate \(w \in PBD(R) \). We sketch the procedure here for the sake of completeness. By the method of exhaustion it is seen that the integral equation of the Fredholm type \((I - T_U) v = h\) has a unique solution \(v \in PD(U) \), where \(I \) is the identity operator. Now \(v|\partial U = 0 \), \(v(Z_0) = h(Z_0) \).
\(v(Z) = 0 \), and \(0 \leq v \leq h \leq 1 \). \(v \) is a Dirichlet-finite subsolution of (1). By the exhaustion method again, and by the weak Dirichlet principle (cf. [8]) we obtain a \(w \in PBD(R) \) such that \(v \leq w \leq 1 \). Now \(w|\Delta \cap U^* = u|\Delta \cap U^* \) by construction and \(w = 0 \) on \(\Delta \cap (R^* - U^*) \). Therefore \(0 \leq w \leq u \) on \(\Delta \) and hence on \(R \). It follows that there is a constant \(c_w \) such that \(w = c_w u \). But \(w(Z) = 0 = c_w u(Z) > 0 \), a contradiction. Hence \(u(Z) = 0 \) as asserted.

Since \(u \) is continuous at \(Z_0 \) and \(u(Z) = 0 \) for any \(Z \neq Z_0 \in U^* \cap \Delta_p \) it follows that \(Z_0 \) is an isolated point of \(\Delta_p \).

To complete the proof we now show \(u|\Delta_p - \{Z_0\} = 0 \). Observe that for the function \(w \in PBD(R) \) constructed above, \(w(Z_0) = (\mathfrak{f} \cap u)Z_0 \), \(w|\Delta_p - \{Z_0\} = 0 \) and \(0 \leq w \leq u \) on \(\Delta_p \). Therefore \(w = c_w u \) on \(R \) and so if there exists a \(Z \in \Delta_p - \{Z_0\} \) such that \(u(Z) > 0 \) we obtain a contradiction \(w(Z) = 0 = c_w u(Z) > 0 \).

This completes the proof.

Corollary 2. If \(Z \in \Delta_p \) is isolated in \(\Delta_p \) then there always exists a \(u \in PBD(R) \) such that \(u(Z) > 0 \) and \(u = 0 \) on \(\Delta - \{Z\} \). Also any PD-function \(v \) on \(R \) has a finite value at \(Z \).

For a proof of the second part we may assume \(u \geq 0 \) on \(R \) since \(u \) has a Riesz decomposition. If \(v(Z) = \infty \) then for \(n = 1, 2, \ldots \) the inequality \(nu \leq v \) holds on \(\Delta \) and hence on \(R \). But this yields the contradiction \(v = \infty \).

5. A relation between PD-minimality and HD-minimality is given by

Theorem 2. If \(\Pi_R \) maps \(PD(R) \) onto \(HD(R) \) then \(u \in PD(R) \) is PD-minimal if and only if \(\Pi_R u \in HD(R) \) is HD-minimal.

Proof. First assume \(u \in PD(R) \) is PD-minimal. Then for any \(h \in HD(R) \) with \(0 \leq h \leq \Pi_R u \) on \(R \) there exists a \(v \in PD(R) \) such that \(\Pi_R v = h \). From (5) and (7) we see that \(u = \Pi_R u \) and \(v = \Pi_R v \) on \(\Delta \). Hence \(0 \leq v \leq u \) on \(\Delta \) and so there exists a constant \(c_v \) such that \(v = c_v u \) on \(R \). So \(h = \Pi_R v = c_v \Pi_R u \) as was to be shown. The converse follows similarly since \(\Pi_R \) is one-to-one.

6. In case \(0 \leq \dim PD(R) < \infty \) we have the following PD-function analogue corresponding to that for HD-functions (cf. [11]) and for PE-functions (cf. [2]):

Theorem 3. \(\Delta_p \) contains exactly \(m \) points if and only if \(\dim PD = \dim PBD = m \).

Proof. First of all if \(m = 0 \), i.e. \(\Delta_p = \emptyset \) then any \(u \in PD(R) \) vanishes on \(\Delta \) by Lemma 2 and consequently \(u \equiv 0 \), i.e. \(\dim PD = \dim PBD = 0 \). Assume next that there are exactly \(m \geq 1 \) points \(Z_1, Z_2, \ldots, Z_m \in \Delta_p \).
Take neighborhoods U_i of Z_i such that $\bar{U}_i \cap \bar{U}_j = \emptyset$ ($i \neq j$) in \mathbb{R}^*. Modify (if necessary) each U_i so that ∂U_i is smooth. Choose $h_i \in HBD(U_i)$ such that $h_i|_{\partial U_i} = 0$, $0 \leq h_i \leq 1$ on U_i, and $h_i(Z_i) = 1$. As in the proof of Theorem 1 construct functions $u_i \in PD(U_i)$ such that $u_i|_{\partial U_i} = 0$, $u_i(Z_i) = 1$, and $0 \leq u_i \leq h_i \leq 1$ in \bar{U}_i. Setting $u_i = 0$ on $R - U_i$, we in turn construct as before $v_i \in PBD(R)$ such that $u_i \leq v_i \leq 1$ on R. For a given v_i observe that $v_i(Z_i) = 0$ for $j \neq i$ since the Z_i are regular points for the Dirichlet problem. It follows that the v_i, $i = 1, 2, \ldots, m$, are linearly independent in $PBD(R)$ and so $\dim PD(R) \geq \dim PBD(R) = m$.

Next let $w \in PD(R)$. Then w has a Riesz decomposition $w = w_1 - w_2$, with $w_i \in PD(R)$, $w_i \geq 0$ on R. We claim that $w_i(Z_i) < \infty$, $j = 1, \ldots, m$. If not, say $w_i(Z_i) = \infty$; then for $c > 0$, $w_i - cw_j |_{\Delta} \geq 0$ and so $w_i \geq cw_j$ on R. But this implies $w_i(Z) = \infty$ for $Z \in R$, a contradiction. Since $w_1 |_{\Delta - \Delta_p} = 0$ it follows that $w = \sum_{i=1}^{m} (w_i(Z_i) - w_2(Z_i))v_i$ on Δ and hence on R. Therefore $\dim PD(\Delta) = \dim PBD(\Delta) = m$.

Conversely if $\dim PD = \dim PBD = m$ then Δ_p cannot contain more than m points. For if there exist at least $m + 1$ points $Z_1, Z_2, \ldots, Z_{m+1} \in \Delta_p$ then as in the first part of the proof construct $m + 1$ linearly independent functions $v_1, v_2, \ldots, v_{m+1} \in PBD$, thereby contradicting $\dim PBD = m$. Hence Δ_p has n points $0 \leq n \leq m$. As earlier in the proof there exist n functions $v_i \in PBD(R)$ such that any $w \in PD(R)$ is a linear combination of these v_i. We conclude Δ_p has precisely m points; and this completes the proof.

Added in proof. Results similar to those in this paper have been obtained by J. L. Schiff (A note on the space of Dirichlet-finite solutions of $\Delta u = Pu$ on a Riemann surface, Hiroshima Math. J. 2 (1972) (to appear)).

References

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823