Homotopic PL $n$-balls are isotopic
HTML articles powered by AMS MathViewer
- by Robert M. Dieffenbach
- Proc. Amer. Math. Soc. 37 (1973), 271-280
- DOI: https://doi.org/10.1090/S0002-9939-1973-0310898-7
- PDF | Request permission
Abstract:
The following theorem extends a result of Martin and Rolfsen [Proc. Amer. Math. Soc. 19 (1968), 1290-1292]. Theorem. Let ${B^n}$ be a PL n-ball, ${Q^q}$ a $(2n - q + 1)$-connected PL q-manifold, $q \geqq n + 2$. Suppose Q is either compact or open and that, for $i = 0,1,{H_i}:{B^n} \to Q - \dot Q$ is a locally unknotted PL embedding. If there exists a homotopy $H:{B^n} \times I \to Q$ between ${H_0}$ and ${H_1}$ such that ${H_t}$ is fixed on ${\dot B^n}$, then there exists a PL ambient isotopy ${h_t}:Q \to Q$, fixed on ${H_0}({\dot B^n}) \cup \dot Q$, such that ${h_1}{H_0} = {H_1}$. Locally unknotted is taken here to mean that there exists a triangulation (L, K) of $(Q,{H_i}({B^n}))$ with $\dot K$ full in K and $({\text {lk}}(\nu ,L)$, ${\text {lk}}(\nu ,K))$ an unknotted sphere pair for all vertices $\nu \in K - \dot K$.References
- Marshall M. Cohen, A general theory of relative regular neighborhoods, Trans. Amer. Math. Soc. 136 (1969), 189–229. MR 248802, DOI 10.1090/S0002-9947-1969-0248802-6
- J. F. P. Hudson, Piecewise linear topology, W. A. Benjamin, Inc., New York-Amsterdam, 1969. University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees. MR 248844
- John F. P. Hudson, Extending piecewise-linear isotopies, Proc. London Math. Soc. (3) 16 (1966), 651–668. MR 202147, DOI 10.1112/plms/s3-16.1.651
- J. F. P. Hudson and E. C. Zeeman, On regular neighbourhoods, Proc. London Math. Soc. (3) 14 (1964), 719–745. MR 166790, DOI 10.1112/plms/s3-14.4.719
- L. S. Husch, Homotopy groups of $\textrm {PL}$-embedding spaces, Pacific J. Math. 33 (1970), 149–155. MR 266219, DOI 10.2140/pjm.1970.33.149
- L. S. Husch and T. B. Rushing, Restrictions of isotopies and concordances, Michigan Math. J. 16 (1969), 303–307. MR 263084, DOI 10.1307/mmj/1029000313
- C. Lacher, Locally flat strings and half-strings, Proc. Amer. Math. Soc. 18 (1967), 299–304. MR 212805, DOI 10.1090/S0002-9939-1967-0212805-1
- Joseph Martin and Dale Rolfsen, Homotopic arcs are isotopic, Proc. Amer. Math. Soc. 19 (1968), 1290–1292. MR 232394, DOI 10.1090/S0002-9939-1968-0232394-6
- C. P. Rourke and B. J. Sanderson, $\Delta$-sets. I. Homotopy theory, Quart. J. Math. Oxford Ser. (2) 22 (1971), 321–338. MR 300281, DOI 10.1093/qmath/22.3.321
- E. C. Zeeman, Linking spheres, Abh. Math. Sem. Univ. Hamburg 24 (1960), 149–153. MR 117739, DOI 10.1007/BF02942027
- Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR 106454
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 37 (1973), 271-280
- MSC: Primary 57C35
- DOI: https://doi.org/10.1090/S0002-9939-1973-0310898-7
- MathSciNet review: 0310898