NILPOTENT ELEMENTS IN BANACH ALGEBRAS

H. BEHNCKE

ABSTRACT. Let \mathcal{A} be an A^*-algebra such that any maximal abelian *-subalgebra is regular and such that any quasinilpotent element x in \mathcal{A} satisfies $x^N=0$, with $N<\infty$. Then any irreducible Hilbert space *-representation is at most N-dimensional. If \mathcal{A} is a C^*-algebra, \mathcal{A} possesses transcendental quasinilpotent elements if there exists a $\pi \in \mathcal{A}$ with $\dim \pi = \infty$.

This note is a continuation of [1]. We want to establish an intimate connection between the degree of noncommutativity of a Banach algebra \mathcal{A} and the existence of nilpotent elements in \mathcal{A}. The proofs are straightforward extensions of the matrix situation and of methods used in [1].

Throughout all Banach algebras are complex Banach algebras with norm $|\cdot|$, continuous involution \ast and an auxiliary norm $|\cdot|_0$ which satisfies $|xx^\ast|_0=|x|_0^2$. Such Banach algebras are called A^*-algebras [3]. In A^*-algebras maximal abelian *-subalgebras are necessarily semisimple. We shall further assume that all Banach algebras have a unit, because the adjunction of a unit does not affect the proofs nor the results. A representation π always denotes a *-representation on a Hilbert space H_π. We say that $x \in \mathcal{A}$ is n-nilpotent, with $n=\infty, 1, 2, \ldots$, if x is quasinilpotent and $x^n=0$ but $x^{n-1}\neq 0$.

We begin with a simple lemma, which is probably known.

LEMMA. Let \mathcal{A} be an A^*-algebra such that any $x=x^* \in \mathcal{A}$ has a finite spectrum with at most n points; then $\dim \mathcal{A} \leq n^2$.

PROOF. Let \mathcal{B} be a maximal abelian (semisimple)*-subalgebra of \mathcal{A}. Then the character space \mathcal{B} of \mathcal{B} has at most n elements. Hence any $x \in \mathcal{B}$ has the form $x=\sum_{i \leq n} \lambda_i e_i$, where the e_i are the minimal idempotents of \mathcal{B}. The e_i are selfadjoint and it is easy to see that $\dim e_i \mathcal{A} e_i \leq 1$.

THEOREM 1. (i) Let \mathcal{A} be an A^*-algebra such that any maximal abelian *-subalgebra is regular and such that any quasinilpotent element x in \mathcal{A} satisfies $x^N=0$, then any irreducible representation π of \mathcal{A} is at most N dimensional.
(ii) Let \(\mathfrak{A} \) be an \(A^* \)-algebra such that any maximal abelian \(* \)-subalgebra of \(\mathfrak{A} \) is regular and assume \(\mathfrak{A} \) has an irreducible representation \(\pi \) of dimension \(1 < N < \infty \), then \(\mathfrak{A} \) has an \(N \)-nilpotent element.

(iii) Let \(\mathfrak{A} \) be an \(A^* \)-algebra such that any irreducible representation of \(\mathfrak{A} \) is at most \(N \)-dimensional; then any quasinilpotent element \(x \) in \(\mathfrak{A} \) satisfies \(x^N = 0 \).

Proof. (i) Let \(\pi \) be an irreducible representation of \(\mathfrak{A} \) and let \(\mathfrak{B} \) be a maximal abelian \(* \)-subalgebra of \(\mathfrak{A} \). By \(\rho \) we denote the restriction of \(\pi \) to \(\mathfrak{B} \). Then the hull \(h(\mathfrak{J}) \) [3] of \(J = \ker \rho \) is a closed set in \(\mathfrak{B} \). Assume we can find \(N + 1 \) distinct points \(t_1, \ldots, t_{N+1} \in h(\mathfrak{J}) \). Then there exist disjoint open neighborhoods \(U_i \) of \(t_i \) in \(\mathfrak{B} \). Since \(\mathfrak{B} \) is regular we can find elements \(a_i \in \mathfrak{B} \) with \(\hat{a}_i(t_i) = 1 \) and \(\hat{a}_i(t) = 0 \) for all \(t \notin U_i \) with \(1 \leq i \leq N + 1 \). Here \(\hat{\cdot} \) denotes the Gelfand transform. Then \(a_i a_j = a_j a_i = 0 \) for \(i \neq j \) and \(a_i \notin \ker \pi \). Let \(c_1, \ldots, c_N \) be arbitrary in \(\mathfrak{B} \), then the element \(a = a_1 c_1 a_2 + \cdots + a_N c_N a_{N+1} \) satisfies \(a^{N+1} = 0 \). By assumption \(a^N = a_1 c_1 a_2 \cdots a_N c_N a_{N+1} = 0 \). This holds for all possible choices of \(c_i \). Since \(\pi(a_{N+1}) \neq 0 \) there exists a \(\xi \in H^* \) with \(\pi(a_{N+1})\xi = \eta \neq 0 \). Then by assumption

\[
\pi(a_1 c_1 a_2^2 \cdots a_N^2) \pi(c_N)\eta = 0.
\]

Keeping the \(c_1, \ldots, c_{N-1} \) fixed for a moment, this holds for all \(c_N \). However since \(\pi \) is irreducible the set \(\{ \pi(c_N)\eta | c_N \in \mathfrak{A} \} \) is dense in \(H^* \). Hence \(\pi(a_1 c_1 \cdots a_N^2) = 0 \) and this holds for any \((N-1) \)-tuple \((c_1, \ldots, c_{N-1}) \). Continuation of this argument finally leads to \(\pi(a_i) = 0 \), a contradiction. Hence any selfadjoint element in \(\pi(\mathfrak{A}) \) has at most \(N \) points in its spectrum. By the lemma we get \(\dim \pi \leq N \).

(ii) Let \(\pi \) be an irreducible representation of dimension \(N \), and let \(e_{i,j} \), with \(1 \leq i, j \leq N \), be a system of matrix units in \(\pi(\mathfrak{A}) \). As in (i) we can find elements \(a_i \in \mathfrak{A} \) such that \(a_i a_j = a_j a_i = 0 \) for \(i \neq j \) and \(\pi(a_i) = e_{i,i} \). Further let \(c_i \in \pi^{-1}(e_{i,i+1}) \) then \(a = a_1 c_1 a_2 + \cdots + a_{N-1} c_{N-1} a_N \) satisfies \(a^N = 0 \) and

\[
\pi(a^{N-1}) = \pi(a_1 c_1 a_2^2 \cdots a_{N-1}^2 c_{N-1} a_N) = e_{1,1} c_{1,1} e_{2,2}^2 \cdots e_{N,N} = e_{1,1} \neq 0.
\]

(iii) Assume \(\mathfrak{A} \) has a quasinilpotent element \(x \) with \(x^N \neq 0 \). Then there exists an irreducible representation \(\pi \) with \(\pi(x^N) \neq 0 \). Since \(\dim \pi \leq N \) this is impossible.

For \(N = 1 \) the theorem may be stated in slightly weaker form.

Corollary. Let \(\mathfrak{A} \) be an \(A^* \)-algebra with normal generators \(\{x_i\} \) such that the abelian \(* \)-subalgebras \(\mathfrak{B}_i \) generated by \(x_i \) and 1 are regular. Then \(\mathfrak{A} \) is commutative iff \(\mathfrak{A} \) has no nilpotent elements.

Proof. Assume \(\mathfrak{A} \) has no nilpotent elements and let \(\pi \) be an irreducible representation of \(\mathfrak{A} \). Then arguing as above we see that \(\text{Sp}(\pi x_i) \) consists of
only one point. Hence \(\pi(x_i) = \lambda_i \mathbf{1} \) and \(\dim \pi = 1 \). Thus \(\mathcal{A} \) is commutative. The converse is trivial, because commutative \(\mathcal{A} \)-algebras are semisimple.

The corollary applies in particular to \(l^1 \)-algebras of discrete groups [1].

Part (ii) of Theorem 1 can be extended to \(n = \infty \) for \(\mathcal{A} \)-algebras.

Theorem 2. Let \(\mathcal{A} \) be a \(\mathcal{C}^* \)-algebra such that there is a \(\pi \in \mathcal{A} \) with \(\dim \pi = \infty \). Then \(\mathcal{A} \) has an \(\infty \)-nilpotent element.

Proof. Again there is no loss of generality to assume that \(\mathcal{A} \) has a unit. We assume further that \(\mathcal{A} \) has no \(\infty \)-nilpotent elements and derive a contradiction. Let \(\pi \in \mathcal{A} \) be an infinite dimensional representation and assume there is a \(b = b^* \in \pi(\mathcal{A}) \) such that the spectrum of \(b \) contains an interval \([\alpha, \beta] \) with \(\beta > \alpha \). Using the functional calculus of \(\mathcal{C}^* \)-algebras we find an \(a = a^* \in \pi(\mathcal{A}) \) with \(\text{Sp} a = [0, 1] \). Let \(c \in \mathcal{A} \) be positive hermitean with \(\pi(c) = a \) and let \(f_i \) be the function.

\[
f_i(t) = 0, \quad t \leq \frac{1}{i+1},
\]

\[
= \text{linear}, \quad \frac{1}{i+1} \leq t \leq \frac{3i+1}{3(i+1)},
\]

\[
= \frac{1}{i^2}, \quad \frac{3i+1}{3(i+1)} \leq t \leq \frac{3i+2}{(i+1)i^3},
\]

\[
= \text{linear}, \quad \frac{3i+2}{3(i+1)} \leq t \leq \frac{1}{i},
\]

\[
= 0, \quad t \geq \frac{1}{i}.
\]

Then the elements \(a_i = f_i(c) \) satisfy \(a_i a_j = 0 \) for \(i \neq j \) and \(\pi(a_i) = f_i(a) \neq 0 \).

Now let \(q = \sum_{i=1}^\infty a_i c_i a_{i+1} \) with \(c_i \in \mathcal{A} \) and \(|c_i| \leq 2 \). Then

\[
q^k = \sum_{i=1}^\infty a_i c_i^2 a_{i+1} \cdots c_{i+k-1} a_{i+k}
\]

and

\[
|q^k| \leq \sum_{i=1}^\infty \frac{2^k}{i^k(i + 1)^4 \cdots (i + k)^2} \leq \sum_{i=1}^\infty \frac{1}{i(i+1) \cdots (i+k)} = \frac{1}{kk!}.
\]

Hence \(q \) is quasinilpotent for all possible choices of \(c_i \). We shall show now that we can find \(c_i \in \mathcal{A} \) such that \(|c_i| \leq 2 \) and such that \(\pi(q^n) \neq 0 \) for all \(n \).

By construction of the \(a_i \) there exist unit vectors \(\xi_i \in H_x \) with \(\pi(a_i) \xi_i = (1/i^2) \xi_i \). Since \(\pi \) is irreducible there exist \(c_i \in \pi(\mathcal{A}) \) with \(|c_i| \leq 2 \) and \(\pi(c_i) \xi_{i+1} = \xi_i \) [2, 2.8.3]. Let \(\{c_i\} \) be a fixed sequence of such operators and
assume that the corresponding q satisfies $q^k = 0$. Then
\[
0 = \pi(q^k)\xi_k + 1 = \pi(a_1 \cdots a_k^2)\pi(c_k)\pi(a_{k+1})\xi_{k+1} = \cdots
\]
\[
= \frac{1}{(k+1)^2} \frac{1}{k^4} \cdots \frac{1}{2^4} \xi_1 \neq 0 \quad \text{a contradiction.}
\]

The case when every maximal abelian subalgebra \mathfrak{B} of $\pi(\mathfrak{A})$ has a totally disconnected spectrum can be treated similarly, because $\dim \pi = \infty$.

This theorem is an extension of a result of Topping [4], who showed that any antiliminal C^*-algebra possesses ∞-nilpotent elements. Our methods however are different and more direct. Theorem 2 shows that any C^*-algebra without ∞-nilpotent elements is necessarily liminal. This result is not optimal. To see this, let \mathfrak{A} be a weak direct sum of liminal C^*-algebras \mathfrak{A}_i, $\mathfrak{A} = \sum \oplus \mathfrak{A}_i$, such that any $\pi \in \mathfrak{A}_i$ satisfies $\dim \pi < \infty$, but such that there exists a $\pi_i \in \mathfrak{A}_i$ with $\dim \pi_i = p_i$ and $p_i \to \infty$. Then by Theorem 1 (ii) there exists a p_i-nilpotent element $a_i \in \mathfrak{A}_i$ with $|a_i| = 1$.

Then $a = \sum a_i / i$ is an ∞-nilpotent element. This example leads immediately to our next theorem.

THEOREM 3. Let \mathfrak{A} be a separable C^*-algebra without ∞-nilpotent elements. Then there exists a positive integer N such that any quasinilpotent element $x \in \mathfrak{A}$ satisfies $x^N = 0$.

Proof. (a) By Theorem 2 we may assume \mathfrak{A} to be liminal. Suppose further that \mathfrak{A} has irreducible representations of arbitrary high but finite dimensions. Determine now as in [2, 4.4.4] an open set $\mathfrak{G}_1 \subset \mathfrak{A}$ with the properties a, b and c of [2, 4.4.4]. Then there exist some positive integer n_1 and a nontrivial open subset $\mathfrak{G}_1 \subset \mathfrak{G}_1 \cap n_1 \mathfrak{A}$ or any nontrivial open subset of \mathfrak{G}_1 contains representations of arbitrary high dimensions. Similarly determine an open subset \mathfrak{G}_2 in $\mathfrak{A} \setminus n_1 \mathfrak{A}$. Continuing this process we either find a sequence of nonempty open sets $\mathfrak{G}_i \subset \mathfrak{G}_i \setminus n_i \mathfrak{A}$ with $n_i \to \infty$ or \mathfrak{A} contains a locally compact open set \mathfrak{O} such that any nontrivial open subset of \mathfrak{O} contains representations of arbitrary high dimensions. In the first case let $J = \mathfrak{A}$ be the ideal corresponding to $\mathfrak{O} = \bigcup_{i=1}^{\infty} \mathfrak{G}_i$, then J has the form $J = \sum' \oplus J_i$ with $J_i = \mathfrak{G}_i$ [2, 1.9.12]. Thus by our result above J contains an ∞-nilpotent element. In the second case determine an infinite family $\{\mathfrak{G}_i\}$ of nonempty disjoint open subsets of \mathfrak{O}. Let J_i be the ideal corresponding to \mathfrak{G}_i. Then the proof of Theorem 2 shows that J_i contains an i-nilpotent element x_i with $|x_i| \leq 2^{-i}$. Clearly $x = \sum \oplus x_i$ is ∞-nilpotent.

An amusing consequence of Theorem 3 is the following result: Let \mathfrak{A} be a separable C^*-algebra; then $\mathfrak{A} = \bigcap \mathfrak{A}_i$ iff for any singly generated subalgebra \mathfrak{B} of \mathfrak{A} we have $\mathfrak{B} = \bigcap \mathfrak{B}_i$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
References

Department of Mathematics, University of Heidelberg, Heidelberg, Federal Republic of Germany

Current address: Fakultät für Mathematik, Universität Bielefeld, 48 Bielefeld, Federal Republic of Germany