A NEW PROOF OF THE FUNCTIONAL EQUATION OF DIRICHLET L-FUNCTIONS

BRUCE C. BERNDT

Abstract. A simple proof, using contour integration, of the functional equation of Dirichlet L-functions is given.

Let \(\chi \) be a nonprincipal, primitive character modulo \(k \). Let

\[
G(z, \chi) = \sum_{j=1}^{k-1} \chi(j) e^{2\pi i j z / k}
\]
denote a Gaussian sum, and put \(G(\chi) = G(1, \chi) \). We shall need two fundamental properties of Gaussian sums. If \(n \) is an integer [1, p. 312],

\[
G(n, \chi) = \chi(n) G(\chi).
\]

Secondly [1, p. 313],

\[
G(\chi)G(\chi) = \chi(-1)k.
\]

Theorem. The Dirichlet L-function,

\[
L(s, \chi) = \sum_{n=1}^{\infty} \chi(n) n^{-s}, \quad \sigma = \text{Re } s > 0,
\]
can be analytically continued to an entire function which satisfies the functional equation

\[
L(1 - s, \chi) = (k/2\pi)^{s} k^{-1} G(\chi) \Gamma(s)L(s, \chi) \left\{ e^{-\pi i s / 2} + \chi(-1) e^{\pi i s / 2} \right\}.
\]

Proof. For \(\sigma > 1 \), it is quite easy to show that [2, pp. 194, 200]

\[
\Gamma(s)L(s, \chi) = \int_{0}^{\infty} x^{s-1} G(ikx / 2\pi, \chi) \frac{dx}{1 - e^{-kx}}.
\]

Equation (4) is the starting point for a proof of (3) by Ayoub [2], but otherwise our proof has nothing in common with his.
Assume that s is real and $s>1$. If m is a positive integer, let C_m denote the positively oriented, closed contour consisting of Γ_m, the right half of the circle with center $(0, 0)$ and radius $m + \frac{1}{2}$, together with the vertical diameter indented at the origin by a semicircle $\Gamma \epsilon$ of radius $\epsilon < 1$ in the right half plane. Define

$$F(z) = \pi e^{-\pi i z} G(z, \bar{z}) / G(\bar{z}) z^s \sin(\pi z),$$

where z^s is given its principal value. On the interior of C_m, F is analytic except for simple poles at $z=1, \ldots, m$. The residue of F at the positive integer n is $G(n, \bar{z}) / G(\bar{z}) n^s = \chi(n) n^{-s}$, upon the use of (1). Hence, by the residue theorem,

$$\frac{1}{2\pi i} \int_{C_m} F(z) \, dz = \sum_{n=1}^{m} \chi(n) n^{-s}. \quad (5)$$

Now, $|e^{-\pi i z} G(z, \bar{z}) / \sin(\pi z)|$ has period k and tends to zero exponentially as $\text{Im} z$ tends to $\pm \infty$. Thus, there exists a positive number M, independent of m, such that for all z on Γ_m,

$$|e^{-\pi i z} G(z, \bar{z}) / \sin(\pi z)| \leq M.$$

Since $s>1$, clearly the integral of F over Γ_m tends to 0 as m tends to ∞. Hence, upon letting m tend to ∞ in (5), we find that

$$L(s, \chi) = \frac{1}{2\pi i} \int_{\Gamma_m} F(z) \, dz + \frac{1}{2\pi i} \int_{\Gamma} F(z) \, dz. \quad (6)$$

The two infinite integrals on the right side of (6) each converge uniformly on any compact set of the complex s-plane. Thus, (6) shows that $L(s, \chi)$ can be analytically continued to an entire function of s, and (6) is then valid for all s.

Now suppose that $s<0$. Since $G(0, \chi)=0$, it is trivial to see that the integral over Γ_ϵ on the right side of (6) tends to 0 as ϵ tends to 0. Letting ϵ tend to 0 in (6), we then obtain for $s<0$,

$$L(s, \chi) = ie^{-\pi is/2} \int_{0}^{\infty} \frac{G(iy, \bar{z}) \, dy}{G(\bar{z}) y^s(1 - e^{-2\pi y})} - ie^{\pi is/2} \int_{0}^{\infty} \frac{e^{-2\pi y} G(-iy, \bar{z}) \, dy}{G(\bar{z}) y^s(1 - e^{-2\pi y})} \quad (7)$$

$$= ie^{-\pi is/2}(k/2\pi)^{1-s} \int_{0}^{\infty} \frac{G(iky/2\pi, \bar{z}) \, dy}{G(\bar{z}) y^s(1 - e^{-2\pi y})} - ie^{\pi is/2}(k/2\pi)^{1-s} \int_{0}^{\infty} \frac{e^{-ky} G(-iky/2\pi, \bar{z}) \, dy}{G(\bar{z}) y^s(1 - e^{-2\pi y})}.$$
If in the definition of $G(z, \chi)$ we replace j by $k - j$, we find that

$$e^{-ky}G(-iky/2\pi, \bar{\chi}) = \chi(-1)G(iky/2\pi, \bar{\chi}).$$

Hence, with the use of (4), (7) reduces to

$$L(s, \chi) = i(k/2\pi)^{1-s}\Gamma(1 - s)L(1 - s, \bar{\chi})(e^{-\pi is/2} - \chi(-1)e^{\pi is/2})/G(\bar{\chi}).$$

If we replace s by $1 - s$, apply (2), and use analytic continuation, (8) reduces to (3), and the proof is complete.

The author is grateful to members of the Number Theory Seminar at the University of Illinois for suggesting a few simplifications in the author’s original proof.

REFERENCES