Ulm’s theorem for totally projective groups
HTML articles powered by AMS MathViewer
- by Elbert A. Walker
- Proc. Amer. Math. Soc. 37 (1973), 387-392
- DOI: https://doi.org/10.1090/S0002-9939-1973-0311805-3
- PDF | Request permission
Abstract:
This paper simplifies the proof of Hill’s version of Ulm’s theorem for totally projective groups by giving one which in essence is the same as the Mackey proof for the countable case.References
- Peter Crawley and Alfred W. Hales, The structure of torsion abelian groups given by presentations, Bull. Amer. Math. Soc. 74 (1968), 954–956. MR 232840, DOI 10.1090/S0002-9904-1968-12102-0
- Peter Crawley and Alfred W. Hales, The structure of abelian $p$-groups given by certain presentations, J. Algebra 12 (1969), 10–23. MR 238947, DOI 10.1016/0021-8693(69)90014-3
- L. Fuchs, Abelian groups, International Series of Monographs on Pure and Applied Mathematics, Pergamon Press, New York-Oxford-London-Paris, 1960. MR 0111783
- Phillip A. Griffith, Infinite abelian group theory, University of Chicago Press, Chicago, Ill.-London, 1970. MR 0289638 P. Hill, On the classification of abelian groups (to appear). —, Ulm’s theorem for totally projective groups, Notices Amer. Math. Soc. 14 (1967), 940. Abstract #652-15.
- Irving Kaplansky, Infinite abelian groups, Revised edition, University of Michigan Press, Ann Arbor, Mich., 1969. MR 0233887
- George Kolettis Jr., Direct sums of countable groups, Duke Math. J. 27 (1960), 111–125. MR 110748
- R. J. Nunke, Homology and direct sums of countable abelian groups, Math. Z. 101 (1967), 182–212. MR 218452, DOI 10.1007/BF01135839
- Larry D. Parker and Elbert A. Walker, An extension of the Ulm-Kolettis theorems, Studies on Abelian Groups (Symposium, Montpellier, 1967) Springer, Berlin, 1968, pp. 309–325. MR 0265458
- Helmut Ulm, Zur Theorie der abzählbar-unendlichen Abelschen Gruppen, Math. Ann. 107 (1933), no. 1, 774–803 (German). MR 1512826, DOI 10.1007/BF01448919
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 37 (1973), 387-392
- MSC: Primary 20K99
- DOI: https://doi.org/10.1090/S0002-9939-1973-0311805-3
- MathSciNet review: 0311805