SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

A SHORT PROOF OF MAC LANE’S PLANARITY THEOREM

P. V. O’NEIL

Abstract. This note gives a short and elementary proof of Mac Lane’s theorem on the embedding of graphs in a 2-sphere.

The purpose of this note is to give a short and elementary proof of a theorem by Saunders Mac Lane on the embedding of graphs in the 2-sphere [4]. Existing proofs are the original ones of Mac Lane and an algebraic topology proof by Lefschetz [3]. Our proof is by Kuratowski’s theorem [2].

Terminology follows [4] and [1], with the exception that we shall call Mac Lane’s 2-fold complete set of circuits a P-base.

Let G be a nonseparable graph.

Theorem. If G has a P-base, then G is planar.

Proof. Let C_1, \ldots, C_n form a P-base for G, and suppose that G is nonplanar. Then $n>1$ and, by Kuratowski’s theorem, G has a subgraph H homeomorphic to K_5 or to $K_{3,3}$. We claim that H also has a P-base. This is immediate by induction if it is first shown that $G-e$ has a P-base for each arc e of G. But, if e is in exactly one C_i, say C_1, then C_2, \ldots, C_n form a P-base for $G-e$, and if e is in two C_i’s, say C_1 and C_2, then $C_3, \ldots, C_n, C_{n+1}=\sum_{i=1}^{n} C_i$ form a P-base for $G-e$.

Thus H, hence also K_5 or $K_{3,3}$, has a P-base. We now show that this is impossible.

If C_1, \ldots, C_6 form a P-base for K_5, then each of the ten branches of K_5 is in exactly two of the circuits C_1, \ldots, C_6, $C_7=\sum_{i=1}^{6} C_i$. But each circuit has at least three branches, so

$$\sum_{i=1}^{7} \text{(number of branches in } C_i) = 20 \geq 21.$$
Similarly, if C_1, \cdots, C_4 form a P-base for $K_3,3$, then set $C_5 = \sum_{i=1}^{4} C_i$. Since each circuit in $K_3,3$ has at least four arcs, then

$$\sum_{i=1}^{5} \text{ (number of branches in } C_i) = 18 \geq 20,$$

completing the proof.

The converse of the theorem is of course also true, but the proof of this is trivial.

References

Department of Mathematics, College of William and Mary, Williamsburg, Virginia 23185