ON DIRECT PRODUCTS OF REGULAR p-GROUPS

J. R. J. GROVES

Abstract. We prove that, for each prime p, there exists a regular p-group $H(p)$ with the property that, if G is a regular p-group and $G \times H(p)$ is regular, then the derived group of G has exponent p. This provides a strong converse to a theorem of Grün.

Introduction. It has long been known that the direct product of regular p-groups need not be regular. The first example was due to H. Wielandt and may be found in [2, III, 10.3]. In the positive direction, however, Grün [3] has shown that if G is a regular p-group whose derived group has exponent p, then $G \times H$ is regular for every regular p-group H. The purpose of this note is to prove a strong converse to this theorem. We will prove:

Theorem. For each prime p, there exists a regular p-group $H(p)$ with the following property:

If G is a regular p-group and $G \times H(p)$ is also regular, then the derived group of G has exponent dividing p.

We recall that a finite p-group G is regular, if, whenever $g, h \in G$, there exists an element d of the derived group of the group generated by g and h such that $(gh)^p = g^p h^p d^p$. If, in addition, G' has exponent p, then $(gh)^p = g^p h^p$ for all g, h belonging to G and so G is p-abelian in the sense of Baer [1]. Conversely, if G is p-abelian, then G is evidently regular and it follows from standard results on regular groups (see, for example, [2, III, 10]), that G' has exponent dividing p. Hence, recalling the quoted theorem of Grün, we have

Corollary. Let G be a regular p-group. Then $G \times H$ is regular, for each regular p-group H, if and only if G is p-abelian.

As regular 2-groups are abelian, the Theorem is trivial if $p = 2$ and so we will henceforth assume that p is an odd prime. We denote the commutator $g^{-1}h^{-1}gh$ of elements g and h of a group G by $[g, h]$—and similarly for higher commutators—and the derived group of G by G'. Also, (g, h) will denote an element of the direct product $G \times H$, where $g \in G$ and $h \in H$. All groups considered in this note are finite.
Proof of the Theorem. We begin by constructing the group \(H(p) \).
We have some freedom of choice in this; in fact it will suffice that our
\(p \)-group have the following properties:

(i) \(H(p) \) can be generated by two elements \(a \) and \(b \).
(ii) \(H(p) \) is regular but not \(p \)-abelian.
(iii) Every commutator, in \(H(p) \), of weight 3 or more has order dividing
\(p \).
(iv) \((ab)^p = a^p b^p \) and \([a, b]^p \neq 1 \).

Our construction is essentially due to Paul M. Weichsel [4], who proves
a similar theorem under the restriction that \(G \) be metabelian. We repeat
it here largely for convenience (and because it involves a slight twist on
that construction), but refer to [4] for fuller details. Let \(A \) denote the
direct product \(\langle a_1 \rangle \times \langle a_2 \rangle \times \cdots \times \langle a_{p-1} \rangle \), where \(\langle a_i \rangle \) is a cyclic group, of
order \(p^2 \) if \(i = 1 \) or 2 and of order \(/; \) if \(i \geq 3 \). Let \(t \) denote \((p - 1)/2 \) and let \(b \)
denote the automorphism of \(A \) defined by:

\[
b : a_i \rightarrow a_i a_{i+1} \quad (1 \leq i < p - 1),
b : a_{p-1} \rightarrow a_{p-1} a_{p-1}^2.
\]

Then the group, \(H(p) \), that we require, is the split extension of \(A \) by \(\langle b \rangle \).
It can be verified, either by direct calculation or by reference to [4], that \(b \)
is, in fact, an automorphism of \(A \) and that the group \(H(p) \) satisfies the
required conditions, with \(a_1 = a \). In particular, property (iv) is verified as
follows:

\[
(ab)^p = a^p b^p [b, a]^p [a, b, \cdots, b] = a^p b^p
\]

since \([a, b, \cdots, b] = [a, b]^p \).

Let \(G \) be a \(p \)-group which is regular but not \(p \)-abelian; we will show that
\(G \times H(p) \) is irregular. It suffices to assume that every proper subgroup and
every proper homomorphic image of \(G \) is \(p \)-abelian—for, otherwise, we
could take a section of \(G \) with these properties. We will now extract a few
relevant properties of \(G \).

As \(G \) is not \(p \)-abelian, there exist elements \(g \) and \(h \) of \(G \) such that \((gh)^p \neq
\]
g^{ph}
\]
and, by the minimality of \(G \), these must generate \(G \). Let \(M \) be a central
subgroup of order \(p \). By the minimality of \(G \), \(G/M \) is \(p \)-abelian and so \(G'/M \)
has exponent \(p \). Thus, if \(g_1, h_1 \) and \(k \) are arbitrary elements of \(G \), \([g_1, h_1]^p \in
\]
\(M \) and so \([g_1, h_1]^p = k = 1 \). Hence, by a standard result on regular groups
[2, III, 10.6], \([g_1, h_1, k]^p = 1 \) and so every commutator of weight 3 or more
has order dividing \(p \). Thus, as \(G \) is regular, \((gh)^p = g^{ph} [g, h]^p r \), for some
integer \(r \). But \([g, h]^p \in M \) and so, as \((gh)^p \neq g^{ph} \), \([g, h] \) has order precisely
\(p \) and \(r \) is prime to \(p \).

The proof of the theorem now follows very quickly. For, suppose that
\(G \times H(p) \) were regular, and let \(x = (g, a) \) and \(y = (h, b) \). As \(G \) and \(H(p) \)

both have the property that commutators of weight 3 or more have order dividing \(p \), \(G \times H(p) \) also has this property. Hence \((xy)^p = \pi y^p[x, y]^p \) for some integer \(s \). But,

\[
(xy)^p = (gh, ab)^p = ((gh)^p, (ab)^p) = (g^p h^p[g, h]^p, a^p b^p) = x^p y^p([g, h]^p, 1).
\]

Thus,

\[
([g, h]^p, 1) = [x, y]^p = ([g, h]^p, [a, b]^p),
\]

and so \([g, h]^p = [g, h]^p \) and \([a, b]^p = 1 \). But \([a, b]^p \neq 1 \) and therefore \(p \mid s \).

It follows that \([g, h]^p = 1 \)—a contradiction which completes the proof of the theorem.

REFERENCES

