The equivalence of two definitions of capacity
HTML articles powered by AMS MathViewer
- by David R. Adams and John C. Polking
- Proc. Amer. Math. Soc. 37 (1973), 529-534
- DOI: https://doi.org/10.1090/S0002-9939-1973-0328109-5
- PDF | Request permission
Abstract:
It is shown that two definitions for an ${L_p}$ capacity $(1 < p < \infty )$ on subsets of Euclidean ${R^n}$ are equivalent in the sense that as set functions their ratio is bounded above and below by positive finite constants. The classical notions of capacity correspond to the case $p = 2$.References
- David R. Adams and Norman G. Meyers, Bessel potentials. Inclusion relations among classes of exceptional sets, Bull. Amer. Math. Soc. 77 (1971), 968â970. MR 284607, DOI 10.1090/S0002-9904-1971-12821-5
- A.-P. CalderĂłn, Lebesgue spaces of differentiable functions and distributions, Proc. Sympos. Pure Math., Vol. IV, American Mathematical Society, Providence, R.I., 1961, pp. 33â49. MR 0143037
- Bent Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171â219. MR 97720, DOI 10.1007/BF02404474 â, Application du thĂŠorème minimax a lâĂŠtude diverse capacitĂŠs, C. R. Acad. Sci. Paris 266 (1968), 921-923.
- Reese Harvey and John Polking, Removable singularities of solutions of linear partial differential equations, Acta Math. 125 (1970), 39â56. MR 279461, DOI 10.1007/BF02838327
- Reese Harvey and John C. Polking, A notion of capacity which characterizes removable singularities, Trans. Amer. Math. Soc. 169 (1972), 183â195. MR 306740, DOI 10.1090/S0002-9947-1972-0306740-4
- I. I. Hirschman Jr., A convexity theorem for certain groups of transformations, J. Analyse Math. 2 (1953), 209â218. MR 57936, DOI 10.1007/BF02825637
- Walter Littman, A connection between $\alpha$-capacity and $m-p$ polarity, Bull. Amer. Math. Soc. 73 (1967), 862â866. MR 219866, DOI 10.1090/S0002-9904-1967-11818-4
- Walter Littman, Polar sets and removable singularities of partial differential equations, Ark. Mat. 7 (1967), 1â9 (1967). MR 224960, DOI 10.1007/BF02591673
- V. G. Mazâ˛ja and V. P. Havin, A nonlinear analogue of the Newtonian potential, and metric properties of $(p,\,l)$-capacity, Dokl. Akad. Nauk SSSR 194 (1970), 770â773 (Russian). MR 0273045
- V. G. Mazâ˛ja, Classes of sets and measures that are connected with imbedding theorems, Imbedding theorems and their applications (Proc. Sympos., Baku, 1966) Izdat. âNaukaâ, Moscow, 1970, pp. 142â159, 246 (Russian). MR 0313791
- V. G. Mazâ˛ja, $p$-conductivity and theorems on imbedding certain functional spaces into a $C$-space, Dokl. Akad. Nauk SSSR 140 (1961), 299â302 (Russian). MR 0157224
- Norman G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255â292 (1971). MR 277741, DOI 10.7146/math.scand.a-10981
- L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 13 (1959), 115â162. MR 109940
- John C. Polking, A Leibniz formula for some differentiation operators of fractional order, Indiana Univ. Math. J. 21 (1971/72), 1019â1029. MR 318868, DOI 10.1512/iumj.1972.21.21082
- Ju. G. ReĹĄetnjak, The concept of capacity in the theory of functions with generalized derivatives, Sibirsk. Mat. Ĺ˝. 10 (1969), 1109â1138 (Russian). MR 0276487
- Robert S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031â1060. MR 0215084
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 37 (1973), 529-534
- MSC: Primary 31B15
- DOI: https://doi.org/10.1090/S0002-9939-1973-0328109-5
- MathSciNet review: 0328109