The product of totally nonmeagre spaces
HTML articles powered by AMS MathViewer
- by J. M. Aarts and D. J. Lutzer
- Proc. Amer. Math. Soc. 38 (1973), 198-200
- DOI: https://doi.org/10.1090/S0002-9939-1973-0309056-1
- PDF | Request permission
Abstract:
In this note we give an example of a separable, pseudo-complete metric space $X$ which is totally nonmeagre (= every closed subspace of $X$ is a Baire space) and yet whose square $X \times X$ not totally nonmeagre.References
- J. M. Aarts and D. J. Lutzer, Pseudo-completeness and the product of Baire spaces, Pacific J. Math. 48 (1973), 1–10. MR 326666 N. Bourbaki, Éléments de mathématique. Fasc. VIII. Livre III: Topologie générale, Chap. 9, Actualités Sci. Indust., no. 1045, Hermann, Paris, 1961; English transl., Addison-Wesley, Reading, Mass., 1966. MR 25 #4480; MR 34 #5044a.
- Eduard Čech, On bicompact spaces, Ann. of Math. (2) 38 (1937), no. 4, 823–844. MR 1503374, DOI 10.2307/1968839
- Z. Frolík, Locally complete topological spaces, Soviet Math. Dokl. 2 (1961), 355–357. MR 0119185
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- John C. Oxtoby, Cartesian products of Baire spaces, Fund. Math. 49 (1960/61), 157–166. MR 140638, DOI 10.4064/fm-49-2-157-166
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 38 (1973), 198-200
- DOI: https://doi.org/10.1090/S0002-9939-1973-0309056-1
- MathSciNet review: 0309056