Oscillatory solutions for a generalized sublinear second order differential equation
HTML articles powered by AMS MathViewer
- by J. W. Heidel and I. T. Kiguradze
- Proc. Amer. Math. Soc. 38 (1973), 80-82
- DOI: https://doi.org/10.1090/S0002-9939-1973-0310339-X
- PDF | Request permission
Abstract:
A criterion is given for the existence of oscillatory solutions for equation (1) below which generalizes a recent result for the sublinear case of (1’). The present theorem is the analogue of a result of Izjumova for the generalized superlinear case.References
- Kuo Liang Chiou, The existence of oscillatory solutions for the equation $d^{2}y/dt^{2}+q(t)y^{r}=0,\,0<r<1$, Proc. Amer. Math. Soc. 35 (1972), 120–122. MR 301292, DOI 10.1090/S0002-9939-1972-0301292-2
- C. V. Coffman and J. S. W. Wong, On a second order nonlinear oscillation problem, Trans. Amer. Math. Soc. 147 (1970), 357–366. MR 257473, DOI 10.1090/S0002-9947-1970-0257473-2
- C. V. Coffman and J. S. W. Wong, Oscillation and nonoscillation of solutions of generalized Emden-Fowler equations, Trans. Amer. Math. Soc. 167 (1972), 399–434. MR 296413, DOI 10.1090/S0002-9947-1972-0296413-9
- J. W. Heidel and Don B. Hinton, The existence of oscillatory solutions for a nonlinear differential equation, SIAM J. Math. Anal. 3 (1972), 344–351. MR 340721, DOI 10.1137/0503032
- D. V. Izjumova, Conditions for the oscillatory and non-oscillatory nature of non-linear differential equations of second order, Differencial′nye Uravnenija 2 (1966), 1572–1586 (Russian). MR 0209579
- Miloš Jasný, On the existence of an oscillating solution of the nonlinear differential equation of the second order $y^{\prime \prime }+f(x)y^{2n-1}=0,$ $f(x)>0$, Časopis Pěst. Mat. 85 (1960), 78–83 (Russian, with Czech and English summaries). MR 0142840
- I. T. Kiguradze, On the conditions for oscillation of solutions of the differential equation $u^{\prime \prime }+a(t)|u|\ sp{n}\,\textrm {sgn}\, u=0$, Časopis Pěst. Mat. 87 (1962), 492–495 (Russian, with Czech and German summaries). MR 0181800
- Jaroslav Kurzweil, A note on oscillatory solution of equation $y''+f(x)y^{2n-1}=0$, Časopis Pěst. Mat. 85 (1960), 357–358 (Russian, with English and Czech summaries). MR 0126025
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 38 (1973), 80-82
- DOI: https://doi.org/10.1090/S0002-9939-1973-0310339-X
- MathSciNet review: 0310339