LOWER BOUNDS FOR SOLUTIONS OF HYPERBOLIC INEQUALITIES IN UNBOUNDED REGIONS

AMY C. MURRAY

Abstract. This paper considers C^2 solutions $u = u(t, x)$ of the differential inequality $|Lu| \leq k_1(t, x)|u| + k_2(t, x) \|\nabla u\|$. The coefficients of the hyperbolic operator L depend on both t and x. Explicit lower bounds are given for the energy of u in a region of x-space expanding at least as fast as wave-fronts for L. These bounds depend on the asymptotic behavior of k_1, k_2, and the coefficients of L. They do not require boundary conditions on u.

1. Introduction. Let L be a hyperbolic operator of the form $Lu = A(t, x)u - u_t$, where $A(t, x)$ denotes a second order uniformly elliptic operator whose coefficients depend on the time variable t as well as the spatial coordinates $x = (x_1, \cdots, x_N)$. Several authors [1], [3], [4], [5], [6] have considered the asymptotic behavior of solutions of the equation

$$ (1.1) \quad Lu = F(t, x, u, \nabla u). $$

Because of both the time-dependence in $A(t, x)$ and the presence of u_t on the right side, one cannot expect all solutions of (1.1) to behave like solutions of the wave equation.

In [4], the author discussed the asymptotic behavior of C^2 solutions of the inequality

$$ (1.2) \quad |Lu| \leq k_1(t, x)|u| + k_2(t, x)\|\nabla u\|. $$

Such an inequality arises from (1.1) if F is assumed Lipschitz in its last two arguments. The results of [4] establish a kind of unique continuation at infinity, e.g., if a solution of (1.2) decays fast enough inside a forward characteristic conoid for L, then it must vanish there. This paper sharpens [4] by providing explicit lower bounds for nonvanishing solutions.

The bounds are comparable to those found by Ogawa [5] for the inequality $\|Lu\| \leq k(t) \|\nabla u\|$ where $\|\cdot\|$ denotes the L^2 norm on a domain.

Received by the editors July 26, 1971 and, in revised form, April 5, 1972.

Key words and phrases. Hyperbolic inequalities, maximal rates of decay, a priori inequalities.

Research supported in part by Air Force Grant AF-AFOSR 68-1462 and in part by NSF Grant GP 28443.

© American Mathematical Society 1973

127
in \mathbb{R}^N. Ogawa's bounds improved certain maximal rate of decay results of Protter [6].

Recently Bloom and Kazarinoff [1] have announced upper bounds on solutions of $Lu=0$ in expanding regions outside an obstacle.

The operator $A(t, x)$ we consider is defined by

$$A(t, x)u = \sum_{i,j=1}^{N} \partial_i \partial_j u(t, x).$$

We assume that the coefficients a_{ij} are C^1 functions on the half-space $\mathcal{H} = \mathbb{R}^+ \times \mathbb{R}^N$ with $a_{ij} = a_{ji}$. Further, we assume that there are positive constants m and M such that

$$(1.3) \quad m^2 \leq \sum_{i,j=1}^{N} a_{ij}(t, x) \xi_i \xi_j \leq M^2$$

for all $(t, x) \in \mathcal{H}$ and all unit vectors ξ in \mathbb{R}^N. Thus the bilinear form

$$(b, c) = b_0 c_0 - \sum_{i,j=1}^{N} a_{ij}(t, x) b_i c_j$$

defines a Lorentz metric in \mathcal{H}.

We can interpret a solution u of (1.2) as a scalar disturbance in a time varying anisotropic medium occupying \mathbb{R}^N. We study the energy of u in a region of x-space which expands at least as fast as wave-fronts for L.

Let $S(T)$ be the region at time T; formally we consider $S(T)$ as a domain in the hyperplane $t=T$ in \mathcal{H}. As T increases, the $S(T)$ sweep out a region $D(0, \infty) = \bigcup \{S(T) : T > 0\}$ in \mathcal{H}.

We say that region $S(T)$ expands faster than light, or faster than wave-fronts for L, if the following two conditions are met: First, the boundaries $\partial S(T)$ sweep out a smooth hypersurface S' in \mathcal{H}, which is the lateral part of the boundary of $D(0, \infty)$. Second, the outer unit normal $\mathbf{n} = (n_0, n_1, \cdots, n_N)$ on $\partial D(0, \infty)$ satisfies $n_0 < 0$ and $((\mathbf{n}, \mathbf{n})) \geq 0$ along S'. For example, for a fixed r the region $S(T) = \{(T, x) : |x| \leq M(T) + r\}$ expands faster than light. If \mathbf{n} is negative characteristic on S', then the $\partial S(T)$ are an expanding wave-front for L.

Suppose that the region $S(T)$ expands at least as fast as light. If w is a C^2 function in \mathcal{H}, we discuss its size in terms of the energy integral

$$\mathcal{E}(w, T) = \int_{S(T)} \left(w^2 + w_t^2 + \sum_{i,j=1}^{N} a_{ij} w_i w_j \right) dx.$$

This paper gives conditions under which a solution u of (1.2) will satisfy a lower bound of the form

$$(1.4) \quad \mathcal{E}(u, T) \geq Ce^{-\eta(T)} \mathcal{E}(u, \tau)$$
for $T>T_\geq 0$. In (1.4), C and γ are positive constants, and f is a function which increases without bound as $T\to\infty$.

In particular we have the following results:

Result I. If $k_1(t, x) = O(t^{-5})$, $k_2(t, x) = O(t^{-1})$, and all $|(a_{ij})_t| = O(t^{-1})$, then (1.4) holds with $f(T) = \ln(T)$.

Result II. If k_1, k_2, and all $|(a_{ij})_t|$ are bounded, then (1.4) holds with $f(T) = T$.

Result III. If there is a constant $c>1$ such that $k_1(t, x) = O(t^{2c-2})$, $k_2(t, x) = O(t^{c-1})$, and all $|(a_{ij})_t| = O(t^{c-1})$, then (1.4) holds with $f(T) = T^c$.

For derivatives we use the notation $\partial w/\partial t = w_t$ and $\partial w/\partial x_i = w_{i\cdot}$. The gradient ∇w is taken with respect to all $N+1$ variables; and $|\nabla w|^2 = \sum_{i=1}^{N} w_i^2$.

We introduce the quadratic form

$$P_{b,c}(\xi) = 2((b, \xi))((c, \xi)) - ((b, c))(\xi, \xi)$$

for vector fields b, c, and ξ on $\mathbb{R} \times \mathbb{R}^N$. As shown by Hörmander [2], this form is positive definite if b and c are positive timelike vectors. [A vector $d = (d_0, d_1, \cdots, d_N)$ is positive timelike iff $d_0 > 0$ and $\langle (d, d) \rangle > 0$.] Notice that $P_{b,c}(\xi)$ is linear in b and c. We use h to denote the timelike vector $h = (1, 0, \cdots, 0)$ in $\mathbb{R} \times \mathbb{R}^N$. Since $P_{h,h}(\xi) = \xi_0^2 + \sum_{i,j=1}^{N} a_{ij} \xi_i \xi_j$, $|\nabla w|$ and $(P_{h,h}(\nabla w))^{1/2}$ are equivalent.

The starting point for the basic estimates is the formula

$$\int_D 2\lambda w_t Lw = \int_D \left(P_{h,\nabla \lambda}(\nabla w) + \lambda \sum_{i,j=1}^{N} (a_{ij})_t w_i w_j \right) - \int_{\partial D} \lambda P_{h,n}(\nabla w)$$

which is valid for any C^1 function $\lambda = \lambda(t, x)$ and any C^2 function $w = w(t, x)$ where D is a bounded domain with piecewise smooth boundary and n is the outer unit normal along ∂D. This formula follows directly from integration by parts.

2. **Proof of Result II.** In this section we consider (1.2) under the assumption that there are constants such that

$$|(a_{ij})_t| \leq K; \quad k_1(t, x) \leq K_1; \quad k_2(t, x) \leq K_2$$

in \mathcal{H}. We will prove Result II of the Introduction as Theorem 2.3. §3 will outline the slight modifications which adapt the proof to the hypotheses for Results I and II.

We start by developing the basic a priori inequality. Notice that no boundary conditions are imposed; the choice of domains and the properties of $P_{b,c}(\xi)$ combine to make boundary conditions unnecessary.
Let \(S(T) \) be a region in \(x \)-space expanding faster than light. Let \(D(\tau, T) \) be the region in \(\mathcal{H} \) swept out by the \(S(t) \) for \(\tau < t < T \); i.e.,

\[
D(\tau, T) = \{(t, x): x \in S(t) \text{ and } \tau < t < T\}.
\]

Then the boundary \(\partial D(\tau, T) \) is composed of three smooth pieces: \(S(T) \), \(S(\tau) \), and the lateral portion along \(S' \). The outer unit normal \(n = (n_0, n_1, \ldots, n_N) \) on \(\partial D(\tau, T) \) is equal to \(h \) on \(S(T) \) and to \(-h\) on \(S(\tau) \).

Suppose \(v \) is a \(C^2 \) function and \(D \) is one of the regions \(D(\tau, T) \) for \(0 \leq \tau < T \). We develop a weighted \(L^2 \) estimate for \(v \) and \(\nabla v \) in \(D \) in terms of \(Lv \). To do this we introduce an auxiliary function \(w = e^{\alpha t}v \) for \(\alpha \) a positive parameter. Computation shows that

\[
e^{\alpha t}Lv = Lw + 2\alpha w_t - \alpha w^2.
\]

Using the elementary inequality \((X + Y + Z)^2 \geq 2(X+Y+Z)\) we get

\[
e^{2\alpha t} |Lv|^2 \geq 2(2\alpha w_t)(Lw - \alpha^2 w).
\]

For \(\beta > 0 \), we multiply through by \(e^{\beta t} \) and then integrate over \(D \) to obtain

\[
(2.2) \quad \iint_D e^{\beta t} e^{2\alpha t} |Lv|^2 \geq 2\alpha \iint_D 2e^{\beta t}w_tLw - 2\alpha^3 \iint_D e^{\beta t}(w^2)_t.
\]

Integration by parts and the properties of \(n \) on \(\partial D \) give us

\[
-\iint_D e^{\beta t}(w^2)_t = \iint_D \beta e^{\beta t}w^2 - \int_{\partial D} n_0 e^{\beta t}w^2
\]

\[
(2.3) \quad \geq \beta \iint_D e^{\beta t}w^2 + \int_{S(\tau)} e^{\beta t}w^2 - \int_{S(T)} e^{\beta t}w^2.
\]

The next two lemmas provide an estimate for the other integral on the right side of (2.2).

Lemma 2.1. Suppose \(\beta m^2 \geq 2KN \). Then

\[
2 \iint_D e^{\beta t}w_tLw \leq \frac{1}{2} \beta \iint_D e^{\beta t}P_{h,n}(\nabla w) - \int_{S(T)} e^{\beta t}P_{h,n}(\nabla w)
\]

\[
+ \int_{S(\tau)} e^{\beta t}P_{h,n}(\nabla w).
\]

Proof. If \(\lambda = e^{\alpha t} \) and \(D = D(\tau, T) \), then formula (1.5) specializes to

\[
(2.5) \quad 2 \int_D e^{\beta t}w_tLw + \int_{\partial D} e^{\beta t}P_{h,n}(\nabla w) = \int_D e^{\beta t}\left\{P_{h,n}(\nabla w) + \sum_{i,j=1}^N (a_{ij}w_1w_1)\right\}.
\]
By assumption (1.3) we have
\[P_{h,h}(\nabla w) = w_i^2 + \sum_{i,j=1}^{N} a_{ij} w_i w_{,j} \geq m^2 \sum_{i=1}^{N} (w_i)^2. \]

But we also have
\[\sum_{i,j=1}^{N} (a_{ij})_{t} w_i w_{,j} \]
\[\leq K \left(\sum_{i=1}^{N} (w_i)^2 \right)^{2} \leq KN \sum_{i=1}^{N} (w_i)^2. \]

Since \(\frac{1}{2} \beta m^2 \geq KN \), we can conclude that
\[(2.6) \beta P_{h,h}(\nabla w) + \sum_{i,j=1}^{N} (a_{ij})_{t} w_i w_{,j} \geq \frac{1}{2} \beta P_{h,h}(\nabla w). \]

The properties of \(n \) on \(\partial D \) yield the inequality
\[(2.7) \int_{\partial D} e^{\beta t} P_{h,h}(\nabla w) \leq \int_{S(T)} e^{\beta t} P_{h,h}(\nabla w) - \int_{S(\tau)} e^{\beta t} P_{h,h}(\nabla w). \]

Using (2.6) and (2.7) to estimate terms in (2.5) we obtain the inequality of the lemma.

We now prove the basic a priori inequality.

Theorem 2.2. Suppose \(v \) is a \(C^2 \) function on \(\bar{D}(0, \infty) \). If \(\alpha > 1 \), \(\beta m^2 \geq 2KN \), and \(0 \leq \tau < T \), then there are constants \(c_i \) such that
\[6 \alpha^3 e^{(\beta + 2\alpha)t} \phi'(v, T) + \int_{D(\tau, T)} e^{(\beta + 2\alpha)t} |Lv|^2 \] \[\geq c_i \alpha \beta \int_{D(\tau, T)} e^{(\beta + 2\alpha)t} (v^2 + |v|^2) + c \alpha e^{(\beta + 2\alpha)t} \phi(v, \tau). \]

Proof. Let \(D \) denote \(D(\tau, T) \) and let \(w = e^{\alpha t} v \). Then we can combine inequalities (2.3), (2.4), and (2.2) to obtain
\[\int_{D} e^{(\beta + 2\alpha)t} |Lv|^2 + 2x \int_{S(T)} e^{\beta t} [P_{h,h}(\nabla w) + \alpha^2 w^2] \] \[\geq \alpha \beta \int_{D} e^{\beta t} [P_{h,h}(\nabla w) + 2\alpha^2 w^2] + 2x \int_{S(\tau)} e^{\beta t} [P_{h,h}(\nabla w) + \alpha^2 w^2]. \]

From the expression of \(P_{h,h}(\nabla w) \) in terms of \(v \) we can show that
\[P_{h,h}(\nabla w) \leq 2e^{2\alpha t} [\alpha^2 v^2 + P_{h,h}(\nabla v)] \]
and
\[P_{h,h}(\nabla w) \geq e^{2\alpha t}[-\frac{1}{2}\alpha^2 v^2 + \frac{1}{3}P_{h,h}(\nabla v)]. \]
Thus (2.9) leads to the inequality
\[
\int_D e^{(\beta + 2\alpha) t} |L u|^2 + 2\alpha e^{(\beta + 2\alpha) t} \int_{S(t)} [3\alpha^2 v^2 + \frac{1}{3}P_{h,h}(\nabla v)]
\geq \alpha \beta \int_D e^{(\beta + 2\alpha) t} \left[\frac{3}{2} \alpha^2 v^2 + \frac{1}{3}P_{h,h}(\nabla v) \right]
+ 2\alpha e^{(\beta + 2\alpha) t} \int_{S(t)} \left[\frac{1}{2} \alpha^2 v^2 + \frac{1}{3}P_{h,h}(\nabla v) \right].
\]
The desired inequality (2.8) now follows because of the hypothesis \(\alpha > 1 \), the equivalence of \(P_{h,h}(\nabla v) \) with \(|\nabla v|^2 \), and the definition of \(\mathcal{E}(v, T) \).

Theorem 2.3. Suppose \(u \) is a \(C^2 \) solution of (1.2) in the closure of \(D(\tau, \infty) \). Then there are positive constants \(C \) and \(\gamma \), independent of \(u \), such that
\[\mathcal{E}(u, T) \geq C e^{-\gamma T} \mathcal{E}(u, \tau) \]
for all \(T > \tau \).

Proof. Pick a fixed \(\beta \) so that \(\beta m^2 \geq 2K \). Since \(u \) is a \(C^2 \) function we can apply Theorem 2.2. Let \(D \) denote \(D(\tau, T) \). For \(\alpha > 1 \) and \(T > \tau \geq 0 \), we have
\[
6\alpha^3 e^{(\beta + 2\alpha) t} \mathcal{E}(u, T) + \int_D e^{(\beta + 2\alpha) t} |L u|^2
\geq c_1 \alpha \beta \int_D e^{(\beta + 2\alpha) t} (u^2 + |\nabla u|^2) + c_2 e^{(\beta + 2\alpha) t} \mathcal{E}(u, \tau).
\]
From (1.2) and (2.1) we find
\[
\int_D e^{(\beta + 2\alpha) t} |L u|^2 \leq 2 \int_D e^{(\beta + 2\alpha) t} (K_2 u^2 + K_2^2 |\nabla u|^2).
\]
Let \(K_3 = \max\{K_1^2, K_2^2\} \). It follows that
\[
6\alpha^3 e^{(\beta + 2\alpha) t} \mathcal{E}(u, T) \geq \int_D e^{(\beta + 2\alpha) t} (c_1 \alpha \beta - 2K_3) (u^2 + |\nabla u|^2) + c_2 e^{(\beta + 2\alpha) t} \mathcal{E}(u, \tau).
\]
Setting \(\gamma = \beta + 2\alpha \) for \(\alpha \) sufficiently large we have
\[
6\alpha^3 e^{\gamma T} \mathcal{E}(u, T) \geq c_2 e^{\gamma T} \mathcal{E}(u, \tau).
\]
The choice of \(C \) required for the theorem is now apparent.
Corollary. If \(u \) is a nonnull solution of (1.2) in \(\bar{D}(\tau, \infty) \), then \(\mathscr{E}(u, T) \) cannot decay faster than \(e^{-\gamma T} \), where \(\gamma \) is chosen as above.

Proof. Let \(C \) and \(\gamma \) be taken as in the theorem. If \(\tau < \sigma < T \), then the proof of the theorem also shows that

\[
\mathscr{E}(u, T) \geq Ce^{-\gamma T}\mathscr{E}(u, \sigma).
\]

So if \(\lim_{T \to \infty} e^{\gamma T}\mathscr{E}(u, T) = 0 \), then \(\mathscr{E}(u, \sigma) = 0 \) for all \(\sigma > \tau \). This would show that \(u \equiv 0 \) in \(\bar{D}(\tau, \infty) \).

3. Remarks on Results I and III. This section indicates how the proof of Theorem 2.3 is adapted to prove Results I and III. Again we consider a given family of regions \(S(T) \) expanding faster than light.

Theorem 3.1. Suppose the coefficients of (1.2) satisfy the bounds

\[
(|a_{ij}|) \leq Kt^{-1}; \quad k_1(t, x) \leq K_1t^{-2}; \quad k_2(t, x) \leq K_2t^{-1}
\]

in \(\bar{D}(\tau, \infty) \) for some \(\tau > 0 \). Suppose \(u \) is a solution of (1.2) in \(\bar{D}(\tau, \infty) \). Then there are constants \(C \) and \(\gamma \), independent of \(u \), such that

\[
\mathscr{E}(u, T) \geq CT^{-\gamma}\mathscr{E}(u, \tau) \quad \text{for all} \quad T > \tau.
\]

Proof. The pattern of proof follows that of §2 exactly except that the weight functions \(\lambda = e^{\sqrt{t}} \) are replaced by \(\lambda = \exp(\alpha \ln(t)) = t^\alpha \). The decay conditions imposed on the coefficients of (1.2) by (3.1) are those required so that the weighted \(L^2 \) integral for \(Lu \) on \(D(\tau, T) \) can be dominated by the terms in \(u^2 \) and \(P_{h,h}(\nabla u) \) which arise from the a priori estimate analogous to Theorem 2.2.

Theorem 3.2. Suppose there is a constant \(c > 1 \) such that the coefficients of (1.2) satisfy the bounds

\[
(|a_{ij}|) \leq Kt^{c-1}; \quad k_1(t, x) \leq K_1t^{2c-2}; \quad k_2(t, x) \leq K_2t^{c-1}
\]

in some \(\bar{D}(\tau, \infty) \). Suppose that \(u \) satisfies (1.2) in \(\bar{D}(\tau, \infty) \). There are constants \(C \) and \(\gamma \), independent of \(u \), such that

\[
\mathscr{E}(u, T) \geq C \exp(-\gamma T^c)\mathscr{E}(u, \tau) \quad \text{for all} \quad T > \tau.
\]

Proof. Here again we follow the outline of §2 using this time the weight functions \(\lambda = \exp(\alpha t^c) \) in place of \(\lambda = e^{\sqrt{t}} \).

References

Department of Mathematics, Cornell University, Ithaca, New York 14850

Current address: Department of Mathematics, Douglass College, Rutgers University, New Brunswick, New Jersey 08903