ON FIXED POINTS OF NONEXPANSIVE MAPPINGS IN NONCONVEX SETS

W. G. DOTSON, JR.

Abstract. Two theorems are proved concerning the existence of fixed points of nonexpansive mappings on a certain class of nonconvex sets. This work extends the author’s previous work on star-shaped sets.

Suppose S is a subset of a Banach space E, and let $F=\{f_\alpha\}_{\alpha \in S}$ be a family of functions from $[0, 1]$ into S, having the property that for each $\alpha \in S$ we have $f_\alpha(1)=\alpha$. Such a family F is said to be contractive provided there exists a function $\phi:(0, 1)\rightarrow(0, 1)$ such that for all α and β in S and for all t in $(0, 1)$ we have
\[
\|f_\alpha(t) - f_\beta(t)\| \leq \phi(t) \|\alpha - \beta\|.
\]
Such a family F is said to be jointly continuous provided that if $t\rightarrow t_0$ in $[0, 1]$ and $\alpha\rightarrow \alpha_0$ in S then $f_\alpha(t)\rightarrow f_{\alpha_0}(t_0)$ in S.

Theorem 1. Suppose S is a compact subset of a Banach space E, and suppose there exists a contractive, jointly continuous family F of functions associated with S as described above. Then any nonexpansive self-mapping T of S has a fixed point in S.

Proof. For each $n=1, 2, 3, \cdots$, let $k_n=n/(n+1)$, and let $T_n:S\rightarrow S$ be defined by $T_nx=f_{T_n}(k_n)$ for all $x \in S$. Since $T(S)\subset S$ and $0<k_n<1$, we have that each T_n is well-defined and maps S into S. Furthermore, for each n we have, for all x, y in S,
\[
\|T_nx - T_ny\| = \|f_{T_n}(k_n) - f_{T_n}(k_n)\| \leq \phi(k_n) \|T_nx - T_ny\| \leq \phi(k_n) \|x - y\|,
\]
so that, for each n, T_n is a contraction mapping on S. As a compact (hence closed) subset of the Banach space E, S is a complete metric space. Therefore each T_n has a unique fixed point $x_n \in S$. Since S is compact, there is a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ such that $x_{n_j} \rightarrow$ some $x \in S$. Since $T_nx_{n_j} = x_{n_j}$ we
have \(T_n x_n \to x \). But \(T \) is continuous (since nonexpansive), and so \(T x_n \to T x \). The joint continuity now yields

\[
T_n x_n = f_{T^2_n} (k_n) \to f_{T^2} (1) = T x.
\]

It follows that \(T x = x \), since \(E \) is Hausdorff. Q.E.D.

A special case of the above theorem is Theorem 1 of [1], where \(S \) is assumed to be star-shaped. With \(p \) a star-center and \(k_n = n/(n+1) \) we have \(f_x (t) = (1-t)p + t a \) so that \(T_n x = f_{T^2_n} (k_n) = (1-k_n)p + k_n T x \). One easily checks that

\[
\| f_x (t) - f_y (t) \| \leq t \| a - \beta \|
\]

so that we can take \(\phi (t) = t \) for \(0 < t < 1 \); and it is a well-known fact that \(f_x (t) = (1-t)p + t a \) is jointly continuous in \(t \) and \(a \).

A family \(F = \{ f_a \}_{a \in S} \) of functions from \([0, 1] \) into a set \(S \) will be called jointly weakly continuous provided that if \(t \to t_0 \) in \([0, 1] \) and \(a \to a_0 \) in \(S \) then \(f_x (t) \to f_x (t_0) = f_{a_0} (t_0) \) in \(S \) (here \(\to \) denotes weak convergence).

Theorem 2. Suppose \(S \) is a weakly compact subset of a Banach space \(E \), and suppose there exists a contractive, jointly weakly continuous family \(F \) of functions associated with \(S \) as described above and before Theorem 1. Then any nonexpansive weakly continuous self-mapping \(T \) of \(S \) has a fixed point in \(S \).

Proof. As in Theorem 1, let \(k_n = n/(n+1) \) and define \(T_n : S \to S \) by \(T_n x = f_{T^2_n} (k_n) \) for all \(x \in S \) and for all \(n = 1, 2, 3, \ldots \). Then, as before, each \(T_n \) is a contraction mapping on \(S \). Since the weak topology of \(E \) is Hausdorff and \(S \) is weakly compact, we have that \(S \) is weakly closed and therefore strongly closed. Hence \(S \) is a complete metric space (with the norm topology of the Banach space \(E \)), and so each \(T_n \) has a unique fixed point \(x_n \in S \). By the Eberlein-Šmulian theorem \(S \) is weakly sequentially compact. Thus there is a subsequence \(\{ x_{n_j} \} \) of \(\{ x_n \} \) such that \(x_{n_j} \to x \) in \(S \). Since \(T_{n_j} x_{n_j} = x_{n_j} \) we have \(T_{n_j} x_{n_j} \to x \). Since \(T \) is weakly continuous we have \(T x_{n_j} \to T x \). The joint weak continuity now yields \(T_{n_j} x_{n_j} = f_{T^2_n} (k_n) \to f_{T^2} (1) = T x \). Since the weak topology is Hausdorff, we now get \(T x = x \). Q.E.D.

Reference

Department of Mathematics, North Carolina State University at Raleigh, Raleigh, North Carolina 27607