A NEW SIMPLE LIE ALGEBRA
OF CHARACTERISTIC THREE

MARGUERITE FRANK

Abstract. We define a restricted simple algebra T of dimension 18 over an arbitrary field of characteristic 3. From a certain property of its Cartan decomposition, we show T to be nonisomorphic to any known algebra of identical dimension.

0. The algebra T furnishes the first instance of a graded simple Lie algebra:

$$(0.1) \quad L = L_{-1} \oplus L_0 \oplus \cdots \oplus L_n, \quad [L_i, L_j] \subseteq L_{i+j},$$

in which L_0 is a solvable algebra of dimension greater than 1.

Contained in T is a 10-dimensional simple restricted graded algebra S, with $S_i \subseteq T_i$, and S_0 solvable, whose newness is still an open question.\(^1\)

1. Definition of T. Let F be a field of characteristic 3. The algebras S and T, alluded to above, are realized as subalgebras of the Witt-Jacobson algebra W_3 over F. This algebra is spanned by derivations:\(^2\)

$$A = (a_1, a_2, a_3) = a_1 \Delta_1 + a_2 \Delta_2 + a_3 \Delta_3,$$

where $a_i \in F[x_1, x_2, x_3]$ with $x_3^2 = 0$, and Δ_i denotes the differential operator $\partial/\partial x_i$. If $B = (b_1, b_2, b_3)$, multiplication in W_3 is given by $[A, B] = C = (c_1, c_2, c_3)$, where

$$(1.1) \quad c_i = \sum_j [(\Delta_j a_i) b_j - (\Delta_j b_i) a_j].$$

The two algebras have nested gradations

$$S = S_{-1} \oplus S_0 \oplus S_1,$$

$$(1.2) \quad T = T_{-1} \oplus T_0 \oplus T_1 \oplus T_2 \oplus T_3,$$

$$[S_i, S_j] \subseteq S_{i+j}, \quad [T_i, T_j] \subseteq T_{i+j}, \quad S_i \subseteq T_i,$$

Received by the editors March 28, 1972.

\(^1\) Although R. Wilson has shown S to be nonisomorphic to the classical matrix algebra of type B_2, the possibility still remains that S is one of the 10-dimensional algebras of [1], [5], or [6].

\(^2\) Cf. [4].
where the subspaces S_i and T_i have the following bases over F:

$$T_{-1} = S_{-1} = \langle \Delta_1, \Delta_2, \Delta_3 \rangle,$$

$$S_0 = \langle A_1 = (x_1, x_2, x_3), A_2 = (0, x_2, -x_3),$$

$$A_3 = (x_2, x_3, 0), A_4 = (0, x_1, -x_2) \rangle,$$

$$S_1 = \langle B_1 = (x_1 x_2, x_1 x_3, -x_2 x_3), B_2 = (x_1^2, x_1 x_2, x_2^2),$$

$$B_3 = (-x_2^2, x_2 x_3, x_3^2) \rangle,$$

$$T_0 = S_0 \oplus \langle A_5 = (x_3, 0, 0) \rangle,$$

$$T_1 = S_1 \oplus \langle B_4 = (x_1 x_3, 0, x_3^2), B_5 = (x_2 x_3, -x_3, 0),$$

$$B_6 = (x_3^2, 0, 0) \rangle,$$

$$T_2 = \langle C_1 = (x_2 x_3 - x_1 x_3^2, x_2 x_3, 0),$$

$$C_2 = (x_1 x_3 - x_1 x_2 x_3, x_1 x_3, x_2^2 x_3), C_3 = (x_1 x_2 x_3, -x_1 x_3^2, x_2 x_3^2) \rangle,$$

$$T_3 = \langle D_1 = (x_1 x_2 x_3 + x_1 x_2 x_3^2, x_1 x_3, x_2 x_3^2) \rangle.$$

(1.3) $T_0 = S_0 \oplus \langle A_5 = (x_3, 0, 0) \rangle,$

$$T_1 = S_1 \oplus \langle B_4 = (x_1 x_3, 0, x_3^2), B_5 = (x_2 x_3, -x_3, 0),$$

$$B_6 = (x_3^2, 0, 0) \rangle,$$

$$T_2 = \langle C_1 = (x_2 x_3 - x_1 x_3^2, x_2 x_3, 0),$$

$$C_2 = (x_1 x_3 - x_1 x_2 x_3, x_1 x_3, x_2^2 x_3), C_3 = (x_1 x_2 x_3, -x_1 x_3^2, x_2 x_3^2) \rangle,$$

$$T_3 = \langle D_1 = (x_1 x_2 x_3 + x_1 x_2 x_3^2, x_1 x_3, x_2 x_3^2) \rangle.$$

Theorem 1.1. The algebras S and T are restricted central simple algebras with a natural gradation such that $S^{(4)} = T^{(4)} = 0$.

Proof. We verify at once that

$$[S_i, S_{i+1}] = S_{i+1} \quad (i = 0, 1),$$

$$[T_i, T_{i-1}] = T_{i-1} \quad (i = 1, 2, 3),$$

$$[T_0, T_3] = T_3.$$

(1.4)

The simplicity of S and T follows at once from (1.4) and the fact that the set of transformations induced in S_{-1}, T_{-1} by multiplication by elements of S_0 and T_0, respectively, is irreducible. Indeed if $\mathfrak{N} \neq 0$ is an ideal of S, then for some $0 \leq r \leq 2$, $\mathfrak{N}(ad S_{-1})^r \neq 0 \in S_{-1} \cap \mathfrak{N}$, and the irreducible representation of $S_{-1} \to \text{Hom} S_{-1}$ then implies that $\mathfrak{N} \supseteq S_{-1}$. But then, (1.4), $\mathfrak{N} \supseteq S_0 \oplus S_1, \mathfrak{N} = S$, and S is central simple. Similarly if $\mathfrak{M} \neq 0$ is an ideal of $T, \mathfrak{M} \supseteq T_{-1}$ and, by (1.4), $\mathfrak{M} \supseteq T_i, i = 0, 1, 2, 3$.

The restrictedness of S and T follows at once from the restrictedness of S_0 and T_0, respectively. Indeed, denoting by A^3 in W_3 the third iterate of the derivation A, it is easily verified that $A_1^3 = A_1, A_2^3 = A_2, A_3^3 = A_3, A_4^3 = A_4, A_5^3 = A_5, A_6^3 = A_6$.

We finally observe that the derived algebras of S_0 and T_0 have the following bases over F:

$$S_0^{(2)} = \langle A_1, A_3, A_4 \rangle, \quad S_0^{(3)} = \langle A_1 \rangle, \quad S_0^{(4)} = 0,$$

$$T_0^{(2)} = \langle A_1, A_3, A_4, A_5 \rangle, \quad T_0^{(3)} = \langle A_1, A_3, A_5 \rangle, \quad T_0^{(4)} = 0.$$

3 Theorem 4.3 of [3] states that a naturally graded subalgebra G of the Witt-Jacobson algebra W_n containing all $\partial/\partial x_i$ is simple if and only if $G = G^1, G_0 = [G_{-1}, G_1], G_1 = [G_1, G_0]$ and the representation of G_0 in G_{-1} is irreducible.

4 Cf. Theorem 3.3 of [3].
2. Cartan decomposition. The subspace \(H = \langle A_1, A_2 \rangle \) is an abelian subalgebra of \(S \) and \(T \). For \(w \in H^* \), define

\[
\begin{align*}
T_w &= \{ t \in T \mid t \text{ ad}(A) = w(A)t \text{ for all } A \in H \}, \\
S_w &= \{ s \in S \mid s \text{ ad}(A) = w(A)s \text{ for all } A \in H \}.
\end{align*}
\]

If \(w_i(A_j) = \delta_{ij} \) \((i, j = 1, 2)\), it follows directly that

\[
\begin{align*}
H &= T_0 = \langle A_1, A_2 \rangle, \\
T_{w_1} &= \langle B_2, B_5 \rangle, & T_{-w_1} &= \langle \Delta_1, C_3 \rangle, \\
T_{w_2} &= \langle A_3, D_1 \rangle, & T_{-w_2} &= \langle A_4, A_5 \rangle, \\
T_{w_1+w_2} &= \langle B_1, B_6 \rangle, & T_{-w_1-w_2} &= \langle \Delta_2, C_2 \rangle, \\
T_{w_1-w_2} &= \langle B_3, B_4 \rangle, & T_{-w_1+w_2} &= \langle \Delta_3, C_1 \rangle.
\end{align*}
\]

Thus \(H \) is a splitting Cartan subalgebra of both \(S \) and \(T \), with roots \(\alpha = \lambda_1 w_1 + \lambda_2 w_2 \) for integers \(\lambda_i = -1, 0, 1 \).

3. Newness of \(T \). The only known simple algebra of dimension 18 is the Witt-Jacobson algebra \(W_2 \). As shown in [2], every Cartan subalgebra of \(W_2 \) is conjugate to one and only one of

\[
H_1 = \langle (x_1, 0), (0, x_2) \rangle, \quad H_2 = \langle (x_1 + 1, 0), (0, x_2) \rangle, \quad H_3 = \langle (x_1 + 1, 0), (0, x_2 + 1) \rangle.
\]

If \(H \) is a Cartan subalgebra of a Lie algebra \(L \), let \(n(L, H) \) denote the number of pairs (unordered) of roots \(\{ \alpha, -\alpha \} \) such that \([L_\alpha, L_{-\alpha}] = H\). Then \(n(L, H) \) depends only on the conjugacy of \(H \). We prove\(^5\)

Lemma 3.1. If \(H \) is a Cartan subalgebra of \(W_2 \), then \(n(W_2, H) \geq 2 \).

Proof. By writing \(H = (\theta_1 = (y_1, 0), \theta_2 = (0, y_2)) \), where \(y_1 = x_1 \) or \(x_1 + 1 \), \(y_2 = x_2 \) or \(x_2 + 1 \), we can prove the lemma for all three \(H_i \) at once. Let

\[
U_w = \{ u \in W_2 \mid u \text{ ad}(\theta) = w(\theta)u \text{ for all } \theta \in H \}.
\]

\(^5\) The author is indebted to R. Wilson for suggesting a proof based on [2] much simpler than her original one. The related proof given here is even shorter.
Letting $w_i(\theta_j)=\delta_{ij}$ for $i,j=1,2$, we determine

\[
U_{w_1} = \langle (y_1^2, 0), (0, y_1 y_2) \rangle, \quad U_{-w_1} = \langle (1, 0), (0, y_1^2 y_2) \rangle, \\
U_{w_2} = \langle (y_1 y_2, 0), (0, y_2^2) \rangle, \quad U_{-w_2} = \langle (y_1 y_2^2, 0), (0, 1) \rangle.
\]

It is at once immediate that $[U_{w_1}, U_{-w_1}]=[U_{w_2}, U_{-w_2}]=H$ for all allowable substitutions for y_1 and y_2. Thus $n(W_2, H) \geq 2$.

Theorem 3.1. The algebra T is not isomorphic to W_2 and is therefore new.

Proof. For $\alpha=w_1, w_2, w_1+w_2$ the subspace $[T_{\alpha}, T_{-\alpha}]$ is equal to $\langle A_1+A_2 \rangle, \langle A_1 \rangle, \langle A_1-A_2 \rangle$, respectively. While $[T_{w_1-w_2}, T_{-w_1+w_2}]=H$. Hence $n(T, H)=1$, and by Lemma 3.1, T cannot be isomorphic to W_2.

Bibliography