Realizability of representations in cyclotomic fields
HTML articles powered by AMS MathViewer
- by Burton Fein
- Proc. Amer. Math. Soc. 38 (1973), 40-42
- DOI: https://doi.org/10.1090/S0002-9939-1973-0314954-9
- PDF | Request permission
Abstract:
In this paper sufficient conditions are given for a real valued complex irreducible character $\chi$ to be written in $Q(\chi )({\varepsilon _q}),{\varepsilon _q}$ a primitive $q$th root of unity, $q$ a prime dividing the order of the group.References
- A. Adrian Albert, Structure of algebras, American Mathematical Society Colloquium Publications, Vol. XXIV, American Mathematical Society, Providence, R.I., 1961. Revised printing. MR 0123587
- Mark Benard, Quaternion constituents of group algebras, Proc. Amer. Math. Soc. 30 (1971), 217–219. MR 280609, DOI 10.1090/S0002-9939-1971-0280609-0
- Richard Brauer, Applications of induced characters, Amer. J. Math. 69 (1947), 709–716. MR 22851, DOI 10.2307/2371795
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- K. L. Fields, On the Brauer-Speiser theorem, Bull. Amer. Math. Soc. 77 (1971), 223. MR 268293, DOI 10.1090/S0002-9904-1971-12691-5
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 38 (1973), 40-42
- MSC: Primary 20C15
- DOI: https://doi.org/10.1090/S0002-9939-1973-0314954-9
- MathSciNet review: 0314954