Vector bundles over finite $\textrm {CW}$-complexes are algebraic
HTML articles powered by AMS MathViewer
- by Knud Lønsted
- Proc. Amer. Math. Soc. 38 (1973), 27-31
- DOI: https://doi.org/10.1090/S0002-9939-1973-0317315-1
- PDF | Request permission
Abstract:
It is proved that for any finite CW-complex $X$ there exists a ring $A$ of continuous functions on $X$, and natural 1-1 correspondences between the finitely generated projective $A$-modules (resp. $A{ \otimes _R}C$-modules), and the topological real vector bundles (resp. complex vector bundles) over $X$ where $A$ is Noetherian and has Krull-dimension equal to the topological dimension of $X$.References
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- Otto Forster, Zur Theorie der Steinschen Algebren und Moduln, Math. Z. 97 (1967), 376–405 (German). MR 213611, DOI 10.1007/BF01112815
- Jacques Frisch, Points de platitude d’un morphisme d’espaces analytiques complexes, Invent. Math. 4 (1967), 118–138 (French). MR 222336, DOI 10.1007/BF01425245
- J. F. P. Hudson, Piecewise linear topology, W. A. Benjamin, Inc., New York-Amsterdam, 1969. University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees. MR 0248844
- Klaus Langmann, Ringe holomorpher Funktionen und endliche Idealverteilungen, Schr. Math. Inst. Univ. Münster (2) 3 (1971), xii+125 (German). MR 294697
- Knud Lønsted, An algebraization of vector bundles on compact manifolds, J. Pure Appl. Algebra 2 (1972), 193–207. MR 337964, DOI 10.1016/0022-4049(72)90002-3
- John Nash, Real algebraic manifolds, Ann. of Math. (2) 56 (1952), 405–421. MR 50928, DOI 10.2307/1969649
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 38 (1973), 27-31
- MSC: Primary 55B15; Secondary 13D15
- DOI: https://doi.org/10.1090/S0002-9939-1973-0317315-1
- MathSciNet review: 0317315