IMBEDDING CLASSES AND n-MINIMAL COMPLEXES

BRIAN R. UMMEL

ABSTRACT. Algebraic and geometrical techniques are used to study examples (new and previously conjectured) of \(n \)-dimensional simplicial complexes which cannot be topologically imbedded in Euclidean \(2n \)-space, but each proper subcomplex of any of them can be imbedded in Euclidean \(2n \)-space.

1. Introduction. An \(n \)-minimal complex is an \(n \)-dimensional simplicial complex which is not imbeddable in \(\mathbb{R}^{2n} \) but each of its proper subcomplexes is imbeddable in \(\mathbb{R}^{2n} \). In this note we study \(n \)-minimal complexes by combining the geometric approach of Grünbaum [2] and Zaks [7] with the algebraic approach of Wu [5]. The new results presented here include a suspension theorem for symmetric deleted products (Theorem 3.1), an affirmative answer to a conjecture of Zaks on the minimality of certain 2-complexes, and a new way of constructing minimal 2-complexes.

2. Definitions. By an \(n \)-complex we mean a topological space which carries the structure of a fixed \(n \)-dimensional simplicial triangulation. The deleted product of an \(n \)-complex \(K \) is defined to be

\[
D_2(K) = \{(x_1, x_2) \in K \times K \mid x_1 \neq x_2\}.
\]

The polyhedral deleted product of an \(n \)-complex \(K \) is defined to be

\[
D'_2(K) = \{(x_1, x_2) \in K \times K \mid C_r(x_1) \cap C_r(x_2) = \emptyset\},
\]

where \(C_r(x) \) is the smallest closed simplex of \(K \) containing \(x \). Let \(\tau \) denote the self-homeomorphism of \(D_2(K) \) or \(D'_2(K) \) defined by \(\tau(x_1, x_2) = (x_2, x_1) \); the antipodal map on the \(n \)-sphere \(S^n \), \(0 \leq n \leq \infty \), is also denoted by \(\tau \). The quotient spaces of \(D_2(K) \), \(D'_2(K) \), and \(S^n \) under the action of \(\tau \) are denoted by \(\Sigma_2(K) \), \(\Sigma'_2(K) \), and \(P^n \) (\(\Sigma_2(K) \) is called the symmetric deleted product of \(K \)). A function \(f \) between spaces of the form \(D_2(K) \), \(D'_2(K) \), or \(S^n \) is equivariant if \(f \circ \tau = \tau \circ f \). For a finite \(n \)-complex \(K \), \(D'_2(K) \) is an
equivariant deformation retract of \(D_2(K)\) (cf. [5]), so \(\Sigma_q(K)\) is a deformation retract of \(\Sigma_{q(q)}(K)\). For any \(n\)-complex \(K\) there is a unique (up to equivariant homotopy) equivariant map \(\tilde{\epsilon}_K: D_2(K) \to S^\infty\) (cf. [3, Chapter 4]), the \(k\)th (mod 2)-imbedding class of \(K\) is defined by \(\Phi^k_2(K) = \tilde{\epsilon}_K^*(w_k) \in H^k(\Sigma_q(K); \mathbb{Z}_2)\) where \(w_k\) is the nonzero element of \(H^k(P^\infty; \mathbb{Z}_2)\) and \(c_K: \Sigma_2(K) \to P^\infty\) is the map induced by \(\tilde{\epsilon}_K\). If \(f: K \to K'\) is an imbedding, denote by \(D_2(f): D_2(K) \to D_2(K')\) the map given by \(D_2(f)(x_1, x_2) = (f(x_1), f(x_2))\); \(D_2(f)\) is equivariant and induces \(\Sigma_2(f): \Sigma_2(K) \to \Sigma_2(K')\). By the uniqueness of \(\tilde{\epsilon}_K\), \(\Sigma_2(f)^*(\Phi^k_2(K')) = \Phi^k_2(K)\). Since \(D_2(R^n)\) is equivariantly homotopy equivalent to \(S^{n-1}\), \(\Phi^k_2(R^n) \neq 0\) iff \(0 \leq k \leq m-1\); so \(\Phi^k_2(R^n) \neq 0\) implies \(K\) cannot be imbedded in \(R^m\). Note also that \(\Phi^k_2(S^m) \neq 0\) iff \(0 \leq k \leq m\). The cone \(CK\) over an \(n\)-complex \(K\) is obtained from \(K \times [0, 1]\) by identifying \(K \times \{1\}\) to a point. The suspension \(SK\) of an \(n\)-complex \(K\) is obtained from \(K \times [-1, 1]\) by identifying \(K \times \{-1\}\) and \(K \times \{1\}\) to separate points. The join \(K \ast K'\) of two complexes \(K\) and \(K'\) is the quotient space of \(K \times K' \times [0, 1]\) under the identifications of the form \((x_1, x_2, 0) \sim (x_1, x_2, 0)\) or \((x_1, x_2, 0) \sim (x_2, x_1, -1)\). We endow \(CK\), \(SK\), and \(K \ast K'\) with the usual simplicial triangulations. We always use singular cohomology; the group of singular \(j\)-chains on \(K\) is denoted by \(\Delta_j(K)\), and \(\Delta(K)\) denotes the singular chain complex of \(K\). Given \(f: K \to K'\), \(f_\#\) denotes the map induced on chains. The ring of integers mod 2 is denoted by \(\mathbb{Z}_2\).

3. The suspension theorem. If \(K\) is a finite \(n\)-complex and \(n \geq 0\), there is an isomorphism \(\sigma_K: H^i(\Sigma_q(K); \mathbb{Z}_2) \to H^{i+1}(\Sigma_q(SK); \mathbb{Z}_2)\). If \(f: K \to K'\) is an imbedding and \(Sf: SK \to SK'\) is the suspension of \(f\), then \(\sigma_K \circ \Sigma_2(f)^* = \Sigma_2(Sf)^* \circ \sigma_K\).

Proof. Let \(G\) be the multiplicative group of order 2 with elements 1 and \(\alpha\), and let \(R\) be the integral group ring of \(G\). We consider \(\mathbb{Z}_2\) a trivial \(R\)-module (i.e. \((m+n\alpha)x = (m+n)x, x \in \mathbb{Z}_2\)). \(\Delta_1(D_2(K))\) has an \(R\)-module structure given by \((m+n\alpha) \cdot s = ms + nt\#(s), s \in \Delta_1(D_2(K))\). \(\Delta_1(SD_2(K))\) has an \(R\)-module structure defined by \((m+n\alpha)s = ms + nt\#(s)\) where \(s \in \Delta_1(SD_2(K))\) and \(\tau: SD_2(K) \to SD_2(K)\) is defined by \(\tau([x_1, x_2, t]) = [x_2, x_1, -t]\). Finally, \(\Delta_1(CD_2(K)) \oplus \Delta_1(CD_2(K))\) has an \(R\)-module structure given by \((m+n\alpha) \cdot (s_1, s_2) = ms_1(s_2) + nt\#(s_2)\). We define \(\beta: \Delta_1(D_2(K)) \to \Delta_1(CD_2(K)) \oplus \Delta_1(CD_2(K))\) by \(\beta(s) = (i_\#(s), i_\#(s))\) where \(i: D_2(K) \to CD_2(K)\) is given by \(i([x_1, x_2]) = [x_1, x_2, 0]\). Define \(\gamma: \Delta_1(CD_2(K)) \oplus \Delta_1(CD_2(K)) \to \Delta_1(SD_2(K))\) by \(\gamma(s_1, s_2) = j_1\#(s_1) - j_2\#(s_2)\) where, for \(k = 1, 2\), \(j_k: CD_2(K) \to SD_2(K)\) is given by \(j_k([x_1, x_2, t]) = [(x_1, x_2), (-1)^{k-1}t]\). Denoting the duals of \(\beta\) and \(\gamma\) by \(\beta^#\) and \(\gamma^#\), a straightforward verification and a standard excision argument show that we have a
short exact sequence of integral chain complexes

\[0 \longrightarrow \text{Hom}_R(\Delta(SD_2(K)); \mathbb{Z}_2) \]

\[(\ast) \quad ^\gamma \text{Hom}_R(\Delta(CD_2(K)) \oplus \Delta(CD_2(K)); \mathbb{Z}_2) \]

\[^\beta \text{Hom}_R(\Delta(D_2(K)); \mathbb{Z}_2) \longrightarrow 0. \]

Hence there is a long exact sequence

\[\cdots \longrightarrow H^k(\text{Hom}_R(\Delta(SD_2(K)); \mathbb{Z}_2)) \]

\[^\gamma * H^k(\text{Hom}_R(\Delta(CD_2(K)) \oplus \Delta(CD_2(K)); \mathbb{Z}_2)) \]

\[^\beta * H^k(\text{Hom}_R(\Delta(D_2(K)); \mathbb{Z}_2)) \]

\[\sigma^* H^{k+1}(\text{Hom}_R(\Delta(SD_2(K)); \mathbb{Z}_2)) \longrightarrow \cdots. \]

Define \(g : SD_2(K) \rightarrow D_2(SK) \) by \(g([x_1, x_2, t]) = ([x_1, t], [x_2, -t]) \). Then \(g \) is an equivariant homotopy equivalence (cf. [1]) with equivariant homotopy inverse \(\tilde{g} : D_2(SK) \rightarrow SD_2(K) \) given by

\[\psi([x_1, t_1], [x_2, t_2]) = \begin{cases} [x_1, x_2, t_1] & \text{if } t_1 \geq \max(0, -t_2) \text{ or } t_1 \leq \min(0, -t_2), \\ [x_1, x_2, -t_2] & \text{if } -t_2 \geq t_1 \geq 0 \text{ or } -t_2 \leq t_1 \leq 0. \end{cases} \]

Since the inclusions \(D_2(K) \rightarrow D_3(K) \) and \(D_2(SK) \rightarrow D_2(SK) \) are equivariant homotopy equivalences, we have, from Proposition IV, 11.4, of [4], isomorphisms

\[\lambda_1 : H^k(\text{Hom}_R(\Delta(SD_2(K)); \mathbb{Z}_2)) \cong H^k(\text{Hom}_R(\Delta(D_2(SK)); \mathbb{Z}_2)) \cong H^k(\Sigma_2(K); \mathbb{Z}_2), \]

\[\lambda_2 : H^k(\text{Hom}_R(\Delta(D_2(K)); \mathbb{Z}_2)) \cong H^k(\Sigma_2(K); \mathbb{Z}_2), \]

and

\[\lambda_3 : H^k(\text{Hom}_R(\Delta(CD_2(K)) \oplus \Delta(CD_2(K)); \mathbb{Z}_2)) \cong H^k(CD_2(K); \mathbb{Z}_2). \]

Since \(H^k(CD_2(K); \mathbb{Z}_2) = 0 \) for \(k > 0 \) and both \(CD_2(K) \) and \(\Sigma_2(SK) \) are connected,

\[\sigma_K = \lambda_1^{-1} \sigma' \circ \lambda_2 : H^k(\Sigma_2(K); \mathbb{Z}_2) \rightarrow H^{k+1}(\Sigma_2(SK); \mathbb{Z}_2) \]

is the desired isomorphism. The naturality of \(\sigma_K \) follows from the naturality of the short exact sequence \((\ast)\), the naturality of the \(\lambda_j \)'s, and routine verifications.

3.1. **COROLLARY.** If \(K \) is a finite \(n \)-complex, then \(\Phi_2^k(S^{2n+1}) = 0 \) if and only if \(\Phi_2^{k+1}(SK) = 0 \).

PROOF. Let \(f : K \rightarrow S^{2n+1} \) be an imbedding. Since \(\Phi_2^k(S^{2n+1}) \) and \(\Phi_2^{k+1}(S^{2n+2}) \) are the unique nonzero elements of \(H^k(\Sigma_2(S^{2n+1}); \mathbb{Z}_2) \) and
\[H^{k+1}(\Sigma_2(S^{2n+2}); \mathbb{Z}_2) \] we have \[\sigma(\Phi_2^K(S^{2n+1})) = \Phi_2^{k+1}(S^{2n+2}) \]. So
\[\sigma(\Phi_2^K(K)) = \sigma \circ \Sigma_2(f)^*(\Phi_2^K(S^{2n+1})) = \Sigma_2(Sf)^* \circ \sigma(\Phi_2^K(S^{2n+1})) = \Sigma_2(Sf)^*(\Phi_2^K(S^{2n+2})) = \Phi_2^{k+1}(SK). \]

The corollary follows, since \(\sigma \) is an isomorphism.

4. The classical \(n \)-minimal complexes. Let \(K_{2n+3} \) be the complete \(n \)-complex on \(2n+3 \) vertices, i.e. the \(n \)-complex with \(2n+3 \) vertices in which every set of \(n+1 \) vertices spans an \(n \)-simplex. Then any complex of the form
\[(** \quad K = K_{2n_1+3}^{n_1} \ast K_{2n_2+3}^{n_2} \ast \cdots \ast K_{2n_p+3}^{n_p} \] is an \(n \)-minimal complex where \(n = n_1 + n_2 + \cdots + n_p + p - 1 \) (cf. [2]). In this section we give a new proof that \(\Phi_2^n(K) \neq 0 \) whenever \(K \) has form (**) . Indeed Grünbaum proved in [2] that if \(K \) has the form (**) then "there is a homeomorphism between \(K \) and \(S^{2n+1} \) which preserves antipodes". Converting this to our notation, Grünbaum's \(K \) is exactly our \(D_2(CK) \) and his homeomorphism preserving antipodes give us an equivariant homeomorphism
\[\phi' : D_2(CK) \rightarrow S^{2n+1} \] and hence an equivariant homotopy equivalence
\[\phi : D_2(CK) \rightarrow D_2(S^{2n+1}) \].

So, on quotient spaces, we have a homotopy equivalence
\[\psi : \Sigma_2(CK) \rightarrow \Sigma_2(S^{2n+1}) \].

Therefore \(\Phi_2^{2n+1}(CK) = \psi^*(\Phi_2^{2n+1}(S^{2n+1})) \neq 0 \). Since \(CK \subseteq SK \), we have \(\Phi_2^{2n+1}(SK) \neq 0 \), and hence, by Corollary 3.1, \(\Phi_2^n(K) \neq 0 \) as desired.

5. The \(n \)-minimal complexes of Zaks. In [7], Zaks proved the existence, for each \(n \geq 2 \), of infinitely many mutually nonhomeomorphic \(n \)-minimal complexes. He was able to give explicit examples for \(n > 2 \), but for \(n = 2 \) a slight indeterminacy remained. In this section we remove that indeterminacy (exactly as Zaks conjectured it would be removed). Our main tool is

5.1. Theorem. Suppose \(K \) and \(K' \) are complexes and \(\Phi_2^i(K) \neq 0 \). If there is a continuous function \(f : K \rightarrow K' \) such that for each \(x \in K' \), \(f^{-1}(x) \) is contained in a closed simplex of \(K \), then \(\Phi_2^i(K') \neq 0 \).

Proof. Define \(\phi : D_2(K) \rightarrow D_2(K') \) by \(\phi(x_1, x_2) = (f(x_1), f(x_2)) \). Let \(r \) be an equivariant retraction of \(D_2(K) \) onto \(D_2(K) \), and \(\lambda : \Sigma_2(K) \rightarrow \Sigma_2(K') \) be the map induced on quotient spaces by \(\phi \circ r : D_2(K) \rightarrow D_2(K') \). Then
\[\lambda^*(\Phi_2^i(K')) = \Phi_2^i(K) \neq 0. \] So \(\Phi_2^i(K') \neq 0 \).
5.2. Modified Zaks construction. Consider the sequence of 2-complexes \(X_0, X_1, X_2, \cdots \), where \(X_0 = K^2_4 \) and \(X_j \) is constructed from \(X_{j-1} \) as follows: let \(x_j \) and \(y_j \) be distinct points in the interior of the same 2-simplex of \(X_{j-1} \); subdivide \(X_{j-1} \) so that \(x_j \) and \(y_j \) are nonadjacent vertices of the new triangulation; then \(X_j \) is the quotient complex of \(X_{j-1} \) obtained by identifying \(x_j \) and \(y_j \). Applying Theorem 5.1 to the natural projection map \(p_j : X_{j-1} \rightarrow X_j \) we have \(\Phi^4_2 (X_j) \neq 0 \), and so \(X_j \) is not imbeddable in \(R^4 \), for each \(j \geq 0 \). Zaks' argument now completes the proof that \(X_j \) is in fact 2-minimal. Since \(X_j \) has exactly \(j \) local cut-points, \(X_i \) and \(X_j \) are not homeomorphic if \(i \neq j \).

6. More 2-minimal complexes. In this section we describe a simple procedure for constructing many new 2-minimal complexes. The procedure can be adapted to one for constructing \(n \)-minimal complexes for \(n > 2 \). Our examples show that the collection of 2-minimal complexes is not nearly exhausted by repeatedly applying Zaks construction to one of the complexes \(K^2_4, K^1_4 \ast K^0_3 \), or \(K^0_3 \ast K^0_3 \ast K^0_3 \). Let \(T \) be a tree (finite contractible 1-complex) and \(f_1, f_2 \) be simplicial imbeddings of \(T \) into a subdivision of \(K = K^2_4 \) such that \(f_1(T) \cap f_2(T) = \emptyset \) and \(f_1(T) \cup f_2(T) \) is a subset of the interior of a 2-simplex of the original triangulation of \(K \). Let \(L \) be the quotient complex obtained by identifying \(f_1(\pi) \) with \(f_2(\pi) \) for each \(\pi \in T \). By Theorem 5.1, \(\Phi^4_2 (L) \neq 0 \), so \(L \) is not imbeddable in \(R^4 \). To show that \(L \) is 2-minimal, let \(\Delta \) be a 2-simplex of \(L \). Then \(\Delta \) is a 2-simplex of \(K \) and it suffices to consider the case \(\Delta \cap (f_1(T) \cup f_2(T)) = \emptyset \). Set \(K' = K - \text{int} \Delta \) and \(L' = L - \text{int} \Delta \), and let \(i : K' \rightarrow R^4 \) be a piecewise linear imbedding (cf. [6]). We take \(R^4 \) to be the space of quadruples \((x_1, x_2, x_3, x_4) \). By a deformation of \(K' \) we can assume there is a 2-simplex \(S \) of the subdivided \(K' \) and 2-disks \(D_1 \) and \(D_2 \) in the interior of \(S \) such that \(f_i(T) \subseteq D_i \), \(i = 1, 2 \), and \(i \) is linear on \(S \). We now alter \(i \) so that \(i(S) \) is contained in the \(x_4 = 0 \) hyperplane of \(R^4 \). Now alter \(i \) again so that

\[
i(D_1) = \{(x_1, x_2, 0, 0) \in R^4 \mid x_1^2 + x_2^2 = 1\},
\]

\[
i(D_2) = \{(x_1, x_2, 0, 1) \in R^4 \mid x_1^2 + x_2^2 = 1\},
\]

and

\[
\{(x_1, x_2, x_3, x_4) \mid x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1, 0 \leq x_4 \leq 1\} = i(D_1) \cup i(D_2).
\]

Now assume \(T \) is a subcomplex of the standard 3-ball \(D^3 \). Since any two piecewise linear imbeddings of a tree in \(R^3 \) are ambiently isotopic, there is an imbedding \(h : D^3 \times [0, 1] \rightarrow R^4 \) such that \(\pi_4 h(x_1, x_2, x_3, s) = s \) where \(\pi_4(x_1, x_2, x_3, x_4) = x_4 \):

\[
h(x_1, x_2, x_3, s) = (x_1, x_2, x_3, s)
\]
if \(x_1^2 + x_2^2 + x_3^2 = 1, \ 0 \leq s \leq 1; \)
\[
\begin{align*}
 h(t, 0) &= i \circ f_1(t) & \text{if } t \in T; \\
 h(t, 1) &= i \circ f_2(t) & \text{if } t \in T.
\end{align*}
\]

Let \(g: D^3 \rightarrow [0, 1] \) be a piecewise linear map such that \(g(x_1, x_2, x_3) = 0 \) iff \((x_1, x_2, x_3) \in T \) and \(g(x_1, x_2, x_3) = 1 \) iff \(x_1^2 + x_2^2 + x_3^2 = 1 \). Define \(k: D_2 \rightarrow D^3 \) by \(k(x) = \pi_1 \circ h^{-1} \circ i(x) \) where \(\pi_1: D_3 \times [0, 1] \rightarrow D^3 \) is the projection. Finally define \(j: K' \rightarrow R^4 \) by
\[
\begin{align*}
 j(x) &= i(x) & \text{if } x \in K' - \text{int } D_2, \\
 &= h(K(x), g(K(x))) & \text{if } x \in D_2.
\end{align*}
\]

It is easily verified that \(j \) induces an imbedding of \(L' \) in \(R^4 \), and our proof that \(L \) is 2-minimal is complete. \(L \) is distinct from any result of the Zaks construction since \(L \) has no local cut-points, and \(L \) is distinct from the classical 2-minimal complexes since \(L \) is not simply connected. By choosing \(T \) to be very complicated and iterating the above process, 2-minimal complexes of great complexity can be constructed.

References