THE NORM OF A DERIVATION IN A W^*-ALGEBRA

LÁSZLÓ ZSIDÓ

Abstract. The norm of an inner derivation δ_a of a (non-necessary separable) W^*-algebra M is shown to satisfy

$$\|\delta_a\| = 2 \inf \{\|a - z\|; z \in Z, \text{the center of } M\},$$

and some related results are obtained.

Let M be an associative algebra. A linear map $\delta : M \rightarrow M$ is called a derivation, if $\delta(xy) = x \cdot \delta(y) + \delta(x)y$ for all $x, y \in M$. A derivation δ is inner, if there exists $a \in M$, such that $\delta(x) = ax - xa, x \in M$. We denote by δ_a the inner derivation defined by a.

In [7] Sakai has shown that every derivation δ in a W^*-algebra M is inner. Our aim is to find a "good" $a \in M$, such that $\delta = \delta_a$.

More precisely, we prove the following theorems:

Theorem 1. If Z is the center of M, there exists a unique application $\Phi : M \rightarrow Z$, such that

(i) $\Phi(za) = z\Phi(a), z \in Z, a \in M$,

(ii) $\|a - \Phi(a)\| = \inf_{z \in Z} \|a - z\|, a \in M$.

Furthermore, Φ is continuous in the norm topology.

Theorem 2. With the notations from Theorem 1,

$$\|\delta_a\| = 2 \cdot \|a - \Phi(a)\|.$$

If δ is a derivation on M, and $a \in M$ is such that $\delta = \delta_a$, then $a - \Phi(a)$ depends only on δ. Put $a(\delta) = a - \Phi(a)$.

Theorem 3. $\delta \mapsto a(\delta)$ is a continuous mapping of the Banach space of all derivations on M into M, equipped with the norm topology.

These results are proved for the W^*-algebra $B(H)$ of all bounded linear operators in a Hilbert space H by Stampfli [8]. We shall reduce the general problem to this one. Also another result from [8] may be extended for the case of an arbitrary W^*-algebra, using our reduction.

Theorems 1 and 2 imply the following

Received by the editors January 13, 1972.

Key words and phrases. W^*-algebra, hyperstonean space, derivation.
Corollary. If \(a \in M \), then
\[
\| \delta_a \| = 2 \inf_{z \in Z} \| a - z \|.
\]

This corollary is proved in [6] for selfadjoint \(a \) and in [3] for \(\mathcal{W}^* \)-algebras with a faithful representation in a separable Hilbert space.

1. Preliminaries for the proofs. Let \(M \) be a \(\mathcal{W}^* \)-algebra, \(Z \) its center and \(\Omega \) the maximal ideal space of \(Z \). For every \(t \in \Omega \), denote by \([t]\) the smallest norm-closed two-sided ideal of \(M \) containing \(t \). Let \(M_t \) be the factor \(C^* \)-algebra \(M/[t] \) and let \(x_t \) denote the image of \(x \in M \) in \(M_t \). Glimm proved in [4] that for each \(x \in M \) the function \(t \rightarrow \| x_t \| \) is continuous on \(\Omega \).

Following a result of Halpern [5], \([t]\) is a primitive ideal for all \(t \in \Omega \). Hence every \(M_t \) has a faithful irreducible representation \(\Pi_t \) in some Hilbert space \(H_t \). If \(a_t \in M_t \), the derivation \(\delta_{\Pi_t(a_t)} \) on \(\Pi_t M_t \) has a unique extension to a derivation in \(B(H_t) \), and these two derivations have equal norms (see for example [1]).

By [8] we have the following lemma:

Lemma. For \(a_t \in M_t \) and a complex number \(\lambda_t \), the following statements are equivalent:

(i) \(\| a_t - \lambda_t \| = \inf_{\lambda \in C} \| a_t - \lambda \| \).
(ii) \(\| a_t - \lambda_t \|^2 + |\lambda_t - \lambda|^2 \leq \| a_t - \lambda \|^2 \) for all \(\lambda \in C \).
(iii) \(\| \delta_{a_t} \| = 2 \cdot \| a_t - \lambda_t \| \).

In particular, for every \(a_t \in M_t \) there exists a unique \(\lambda_t \in C \) such that the above equivalent conditions are satisfied. If \(\| a_t' - a_t \| \leq \varepsilon \) then \(|\lambda_t' - \lambda_t| \leq \frac{1}{2}(\varepsilon^2 + 8\varepsilon \| a_t - \lambda_t \|)^{1/2} \).

2. Proof of Theorems 1 and 2. Let \(a \in M \) and \(a_t \) its canonical image in \(M_t \). By the above Lemma, for every \(t \in \Omega \) there exists a unique \(\lambda_t \in C \) such that the statements of the Lemma hold.

Now, \(t \rightarrow \| a_t - \lambda_t \| \) is an upper semicontinuous function in \(\Omega \). Indeed, if \(\alpha > 0 \) and \(\| a_{t_0} - \lambda_{t_0} \| < \alpha \) for some fixed \(t_0 \in \Omega \), then by Glimm's result there exists a neighborhood \(V \) of \(t_0 \), such that, for \(t \in V \), \(\| a_t - \lambda_{t_0} \| < \alpha \). Hence for \(t \in V \), \(\| a_t - \lambda_t \| \leq \| a_t - \lambda_{t_0} \| < \alpha \). So \(\{ t \in \Omega, \| a_t - \lambda_t \| < \alpha \} \) is open and the upper semicontinuity of \(t \rightarrow \| a_t - \lambda_t \| \) is proved.

Since \(\Omega \) is hyperstonean, there exists an open dense set \(D \subset \Omega \), such that the restriction of \(t \rightarrow \| a_t - \lambda_t \| \) to \(D \) is continuous (see for example [2]).

Let \(t_0 \in D \). By the Lemma, for every \(t \),
\[
\| a_t - \lambda_t \|^2 + |\lambda_t - \lambda_{t_0}|^2 \leq \| a_t - \lambda_{t_0} \|^2.
\]

Since \(t_0 \) is a continuity point of \(t \rightarrow \| a_t - \lambda_t \| \), \(\lim_{t \to t_0} \| a_t - \lambda_t \| = \| a_{t_0} - \lambda_{t_0} \| \).

On the other hand, by Glimm's result, \(\lim_{t \to t_0} \| a_t - \lambda_{t_0} \| = \| a_{t_0} - \lambda_{t_0} \| \).

Hence \(\lim_{t \to t_0} |\lambda_t - \lambda_{t_0}| = 0 \), that is \(t \rightarrow \lambda_t \) is continuous in \(t_0 \).
Using again the fact that Ω is hyperstonean, there exists a continuous function f on Ω such that, on an open dense subset of Ω, f is given by $t \mapsto \lambda_t$.

If $t_0 \in \Omega$ is arbitrary, there exists a generalized sequence (t_i), convergent to t_0, such that for every i, $f(t_i) = \lambda_{t_i}$. Obviously,

$$\|a_{t_i} - f(t_i)\| = \|a_{t_i} - \lambda_{t_i}\| \leq \|a_{t_i} - \lambda_{t_0}\|.$$ But f is a continuous function on Ω, so it may be considered an element of Z, and by Glimm's result

$$\lim_i \|a_{t_i} - f(t_i)\| = \lim_i \|(a - f)_{t_i}\| = \|(a - f)_{t_0}\| = \|a_{t_0} - f(t_0)\|.$$ Again by Glimm's result

$$\lim_i \|a_{t_i} - \lambda_{t_0}\| = \|a_{t_0} - \lambda_{t_0}\|.$$ Hence

$$\|a_{t_0} - f(t_0)\| \leq \|a_{t_0} - \lambda_{t_0}\|.$$ The converse inequality is obvious by the Lemma, and the unicity of λ_{t_0} implies $f(t_0) = \lambda_{t_0}$.

In conclusion, $t \mapsto X_t$ is everywhere equal to the continuous function f.

Put $\Phi(a) = f$.

Since $\bigcap_{t \in \Omega} \{t\} = \{0\}$, for every $x \in M$, $\|x\| = \sup_{t \in \Omega} \|x_t\|$. Now it is easy to verify that Φ satisfies conditions (i) and (ii) of Theorem 1.

If $\Psi : M \to Z$ satisfies the conditions of Theorem 1, and there exists $a \in M$ such that $\Phi(a) \neq \Psi(a)$, then there exists a nonvoid open and closed set $V \subset \Omega$ and $\varepsilon > 0$, such that for $t \in V$, $|\lambda_t - \Psi(a)_t| = |\Phi(a)_t - \Psi(a)_t| \geq \varepsilon$.

If $z \in Z$ is the characteristic function of V, by condition (i) and the Lemma,

$$\|az - \Phi(az)\|^2 = \sup_t \|a_t - \lambda_t\|^2 \leq \sup_t (\|a_t - \Psi(a)_t\|^2 - |\lambda_t - \Psi(a)_t|^2) \leq \|az - \Psi(az)\|^2 - \varepsilon^2$$

in contradiction to condition (ii). Hence $\Psi = \Phi$.

The continuity of Φ results from the last statement of the Lemma.

Finally, if $x \in M$ and $\|x\| \leq 1$, then for every $t \in \Omega$,

$$\|\delta_a(x)_t\| = \|\delta_a(x)_t\| \leq 2 \|a_t - \lambda_t\| \leq 2 \|a - \Phi(a)\|.$$ Hence

$$\|\delta_a(x)\| = \sup_t \|\delta_a(x)_t\| \leq 2 \|a - \Phi(a)\|,$$

and Theorem 2 is also proved.
3. **Proof of Theorem 3.** Using our construction of \(\Phi \), it is easy to see that, for \(a \in M \) and \(z \in \mathbb{Z} \), \(\Phi(a+z) = \Phi(a) + z \). This implies that, in fact, \(a - \Phi(a) \) depends only on \(\delta_a \). Hence \(\delta \to a(\delta) \) is well defined.

Let \(\delta' \) and \(\delta \) be two derivations on \(M \) such that \(\|\delta' - \delta\| \leq \varepsilon \). By the theorem of Sakai and Theorems 1 and 2 above, there exists \(b \in M \), \(\|b\| \leq \varepsilon/2 \) such that \(\delta' - \delta = \delta_b \). If \(a = a(\delta) \) and \(a = a + b \), then \(\delta = \delta_a \), \(\delta' = \delta_{a'} \) and \(\|a' - a\| \leq \varepsilon/2 \). Using the construction of \(\Phi \) and the Lemma,

\[
\|\Phi(a') - \Phi(a)\| \leq \frac{1}{2}(\varepsilon + (\varepsilon^2 + 16 \|a - \Phi(a)\|)^{1/2})
= \frac{1}{2}(\varepsilon + (\varepsilon^2 + 16 \|a(\delta)\|)^{1/2}).
\]

Hence

\[
\|a(\delta') - a(\delta)\| \leq \|a' - a\| + \|\Phi(a') - \Phi(a)\|
\leq \frac{3}{4} \varepsilon + \frac{1}{4}(\varepsilon^2 + 16 \|a(\delta)\|)^{1/2}.
\]

This inequality implies the continuity of \(\delta \to a(\delta) \).

Problem. What information about \(M \) is given by \(\Phi \)?

We remark that \(\Phi \) is not well understood even in the case \(M = B(H) \) (see [8]).

References

Institute of Mathematics, Academy of the Socialist Republic of Romania, Calea Grivitei, 21, Bucharest 12, Romania