QUASI-UNMIXED LOCAL RINGS AND QUASI-SUBSPACES

PETER G. SAWTELLE

Abstract. The concept of a quasi-subspace is defined so that it plays a role relative to quasi-unmixedness analogous to that of subspace to unmixedness. This definition is used to characterize quasi-unmixed local rings.

1. Introduction. In this paper, a ring shall be a commutative ring with identity. The terminology is basically that of [3] and [9]. In particular, a semilocal (Noetherian) ring R is called unmixed (resp., quasi-unmixed) in case depth $p =$ altitude R, for every prime divisor (resp., minimal prime divisor) p of zero in the completion of R.

Proposition 3.3 in [1] gives an example of a local domain A of altitude two whose integral closure is a convergent power series ring in two variables over the complex number field, and whose completion A^* contains an imbedded prime divisor of zero. Thus A is not unmixed. However, by [5, Corollary 3.4(i)], A is quasi-unmixed.2 (This example answers Problem 1 of [2, p. 62].)

Ratliff [6, §4] characterizes an unmixed local ring R in terms of certain local rings that contain R as a subspace. This paper parallels [6, §4]; in particular, the concept of a quasi-subspace is introduced to play a role relative to quasi-unmixedness analogous to the role played by a subspace to unmixedness. Since the concepts of unmixedness and quasi-unmixedness are distinct, the results and techniques below should be of assistance in investigating quasi-unmixed local rings. The results of this paper and of [5], [6] have been used in [8] to characterize unmixed and quasi-unmixed local domains. (Specifically, if R is a particular Rees ring of a local domain R, then the property that a certain transform ring of R is contained in the integral closure of R (resp., is Noetherian) is a condition which characterizes (resp., is closely related to) the quasi-unmixedness (resp., unmixedness) of R.)
2. Preliminary definitions and results.

Definition 1. Let R and S be semilocal rings with completions R^* and S^*. R is a quasi-subspace of S if there exists an isolated ideal component I^* of zero in R^* such that $I^* \subseteq \text{rad } R^*$ and such that S^* dominates R^*/I^* and S dominates R/I, where $I = I^* \cap R$.

Note that $I^* \subseteq \text{rad } R^*$ implies that $I \subseteq (\text{rad } R^*) \cap R = \text{rad } R$, and so $I = \text{rad } R$. Also, by letting $I^* = (0)$, note that a semilocal ring is a quasi-subspace of itself and that a semilocal ring that is a subspace of a semilocal ring S is also a quasi-subspace of S.

Lemma 2 below gives a characterization of quasi-subspaces that is easier to use for the rings considered in §3. Lemma 3 then shows how the concept of quasi-subspace is related to the minimal prime divisors of zero of these rings. In particular, Lemma 3 and Corollary 8 give a relation between quasi-unmixed local rings and the minimal prime divisors of zero in certain Rees rings of their completions (Corollary 9).

For ease of notation, let R_k denote a polynomial ring in k indeterminants over a ring R. For the completion R^* of R, $R^* = (R^*)_k$.

Lemma 2. Let (R, M) be a local ring with completion (R^*, M^*). Let $k \geq 0$, and let y_1, \ldots, y_d ($d \geq 0$) be elements of the total quotient ring of R_k. Let $A = R_k[y_1, \ldots, y_d]$ and $A^* = (R^*_k)[y_1, \ldots, y_d]$. Let P^* be a prime ideal in A^* such that $P^* \cap R^* = M^*$, and let $P = P^* \cap A$. Then, R is a quasi-subspace of A_P if and only if A_P dominates R^*/I^* for some isolated ideal component of zero in R^* such that $I^* \subseteq \text{rad } R^*$.

Proof. Let A_P dominate R^*/I^* and $I = I^* \cap R$, where I^* is given above. Let K (resp., K^*) be the kernel of the natural homomorphism of A into A_P (resp., A^* into A^*_P). Since $A_P = (A/K)_{P/K}$ is a dense subspace of $A_P^* = (A^*/K^*)_{P^*/K^*}$ [6, Lemma 3.2], then $K = K^* \cap A$. Also, $I^* = K^* \cap R^*$. Therefore, $I = K \cap R$, and so R/I is a subring of A_P. Since $P \cap R = M$ [6, Lemma 3.2], A_P dominates R/I. Since $(A_P)^* = (A_P^*)^*$ [6, Lemma 3.2], and $(A_P^*)^*$ dominates A_P^*, then $(A_P)^*$ must dominate R^*/I^*.

Conversely, let R be a quasi-subspace of A_P. Let I^* be as in Definition 1, and let K^* be as above. Then R^*/I^* is a subring of $(A_P)^* = (A_P^*)^*$, and is therefore a subring of A_P^*. Hence A_P^* dominates R^*/I^*, since $P^* \cap R^* = M^*$. Q.E.D.

Lemma 3 (cf. [6, Lemma 4.5(1)]). Let R, R^*, A, A^*, P and P^* be as in Lemma 2. Then R is a quasi-subspace of A_P if and only if P^* contains all minimal prime divisors of zero in A^*.

Proof. Let R be a quasi-subspace of A_P. By Lemma 2, R^*/I^* is a subring of A_P^*, where I^* is given in Definition 1. Thus $I^* = K^* \cap R^*$,
where \(K^* \) is given in Lemma 2. Therefore, since \(K^* \) is an isolated ideal component of zero in \(A^* \), and since \(A^* \) and \(R^*_k \) have the same total quotient ring, it follows that \(K^* \cap R^*_k = I^* \cap R^*_k \subseteq \text{rad} \, R^*_k = \text{rad} \, R^*_k \). Thus \((\text{rad} \, K^*) \cap R^*_k = \text{rad} \, (K^* \cap R^*_k) = \text{rad} \, R^*_k \), and so \(\text{rad} \, K^* = \text{rad} \, A^* \). Hence \(P^* \) contains every minimal prime ideal in \(A^* \).

Conversely, let \(K^* \) be as above, and define \(I^* = K^* \cap R^* \). Then \(R^*/I^* \) is a subring of \(A^*_P \). Since \(P^* \) contains all minimal prime ideals in \(A^* \), \(\text{rad} \, I^* = \text{rad} \, (K^* \cap R^*) = (\text{rad} \, K^*) \cap R^* = (\text{rad} \, A^*) \cap R^* \). Since \(R^* \) is a subring of \(A^* \), \((\text{rad} \, A^*) \cap R^* = \text{rad} \, R^* \).

Also, since \(K^* \) is an isolated ideal component of zero in \(A^* \) and since \(R^*_k \) and \(A^* \) have the same total quotient ring, it follows that \(I^* \) is an isolated ideal component of zero in \(R^* \). And \(A^*_P \) dominates \(R^*/I^* \), since \(P^* \cap R^* = M^* \). Hence, by Lemma 2, \(R \) is a quasi-subspace of \(A_P \). Q.E.D.

Remark 4. We give a number of known properties of unmixed and quasi-unmixed semilocal rings that will be needed in the remainder of the paper:

1. \(R \) is a quasi-unmixed semilocal ring if and only if \(R/q \) is quasi-unmixed and depth \(q \)-altitude \(R \), for every minimal prime divisor \(q \) of zero in \(R \) [4, Lemma 2.2].

2. If \(R \) is a quasi-unmixed semilocal ring and \(P \) is a prime ideal in \(R \), then \(R_P \) is quasi-unmixed [4, Lemma 2.5].

3. Let \(R \) be a semilocal domain. If \(R \) is quasi-unmixed and \(A \) is a finitely generated domain over \(R \), then \(A \) is locally quasi-unmixed [4, Corollary 2.5].

4. Let \((R, M) \) be a local ring. If altitude \(R=0 \), or altitude \(R=1 \) and \(M \) is not a prime divisor of zero, then \(R \) is unmixed and, therefore, quasi-unmixed.

3. Some characterizations of quasi-unmixed local rings. With Lemma 3 and Remark 4, the techniques of [6] can be adapted to prove most of the following results. The proofs are essentially accomplished by replacing “subspace” by “quasi-subspace”, “unmixed” by “quasi-unmixed”, “prime divisor of zero” by “minimal prime divisor of zero” and “Remark 4.6” by “Remark 4”, and by making the appropriate reference changes. Since the proofs of Corollary 7 and Corollary 8 are entirely analogous to those in [6], they will be omitted.

Lemma 5 (cf. [6, Lemma 4.5(2)]). Let \(R, R^*, A \) and \(A^* \) be as in Lemma 2. Let \(P \) be a prime ideal of \(A \) such that \(R \) is a quasi-subspace of \(A_P \). Then the following statements hold:

1. \(P^* = PA^* \) is a prime ideal of \(A^* \) that lies over \(P \), and \(A_P \) is a dense subspace of \(A^*_P \).

2. \(R \) is quasi-unmixed if and only if \(A_P \) is quasi-unmixed.
(3) If Q is a prime ideal of A such that $P \subseteq Q$, then R is a quasi-subspace of A_Q.

Proof. By the domination of Definition 1, it is straightforward to show that $P \cap R = M$. (1) then follows by [6, Lemma 3.2]. It will be shown in Theorem 6(2)(a) that if R is quasi-unmixed, then A_P is quasi-unmixed (even if R is not a quasi-subspace of A_P). The converse of (2) can be shown by using the quasi-unmixedness of A_{P^*}, (1) and Lemma 3 in an adaptation of the proof in [6]. (3) is easily proved by using Lemma 3. Q.E.D.

The following theorem is the main result of this paper. It will be applied (Corollary 8) to characterize a quasi-unmixed ring R in terms of quotient rings of certain Rees rings of R. Another application to a specific class of rings is given in Corollary 7.

Theorem 6 (cf. [6, Theorem 4.1]). Let (R, M) be a local ring with altitude $n \geq 0$. Then:

(1) R is quasi-unmixed if and only if there exist an integer k, elements y_1, \ldots, y_d of the total quotient ring of R_k, and a prime ideal P in $A = R_k[y_1, \ldots, y_d]$ such that R is a quasi-subspace of A_P and A_P is quasi-unmixed.

(2) Let f_0, f_1, \ldots, f_d be in R_k ($d \geq 0$ and $k \geq 0$), where f_0 is not a zero divisor in R_k. Let $y_i = f_i/f_0$ and $A = R_k[y_1, \ldots, y_d]$. Then the following hold:

(a) If R is quasi-unmixed, then A is locally quasi-unmixed.

(b) If P is a prime ideal in R_k such that $(M, f_0, \ldots, f_d)R_k \subseteq P$ and such that f_0, \ldots, f_d are a subset of a system of parameters in R_kP, then PA is a prime ideal of A, height $PA = \text{height } P - d$, and depth $PA = \text{depth } P + d$.

(c) If R is quasi-unmixed and P is given in (b) then R is a quasi-subspace of A_Q, for all prime ideals Q in A such that $PA \subseteq Q$.

Proof. For (1), if R is quasi-unmixed, then the conclusion will follow from (2). The converse follows by Lemma 5. (2)(b) is proven in [6] and is stated here for convenience. By using Remark 4, (2)(a) can be proven by adapting the proof in [6]. By noting that the proof of the fact that R_{kP} is a dense subspace of R_{kP^*} in [6] is valid if R is quasi-unmixed, (c) then follows by adapting the remainder of the proof in [6] and using the lemmas in this paper. Q.E.D.

Corollary 7 (cf. [6, Corollary 4.8]). Let (R, M) be a local ring of altitude $n \geq 1$. Assume that M is not a prime divisor of zero. Then the following are equivalent:

(1) R is quasi-unmixed.

(2) There exist analytically independent elements $x_0, x_1, \ldots, x_{n-1}$ in R such that x_0 is not a zero-divisor and such that R is a quasi-subspace of A_{M^*} where $A = R[x_1/x_0, \ldots, x_{n-1}/x_0]$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
(3) For every system of parameters x_0, \ldots, x_{n-1} in R such that x_0 is not a zero-divisor, R is a quasi-subspace of A_{M_A}, where A is given in (2).

(4) There exists a finitely generated ring A over R such that $R \subseteq A \subseteq T$ where T is the total quotient ring of R, and there exists a prime ideal P in A such that R is a quasi-subspace of A_P and A_P is quasi-unmixed.

Let $B=(b_1, \ldots, b_k)R$ be an ideal in a Noetherian ring R. Let t be an indeterminant, and let $u=1/t$. The Rees ring $\mathcal{R}=\mathcal{R}(R, B)$ of R with respect to B is the ring $\mathcal{R}=R[u, tb_1, \ldots, tb_k]$. \mathcal{R} is a graded Noetherian subring of $R[u, t]$. If (R, M) is a local ring, then $\mathcal{M}=(M, u, tb_1, \ldots, tb_k)$ is the unique maximal homogeneous ideal of \mathcal{R} [7, Theorem 3.1, step (ii)]. By [6, Remark 3.10(ii)], if b_1, \ldots, b_k form a system of parameters in the local ring (R, M), then $p=(M, u)\mathcal{R}$ is a height one depth k prime ideal in \mathcal{R}, and p is the radical of $u\mathcal{R}$ (and so p is the unique height one prime divisor of $u\mathcal{R}$).

The characterization of certain concepts of a ring R via the transition to a Rees ring has often been useful, and indeed this is the case here. Corollary 9 and the equivalence of (1) and (4) in Corollary 8 are the main results of this paper used in [8].

Corollary 8 (cf. [6, Corollary 4.9]). Let (R, M) be a local ring of altitude $n \geq 0$. The following are equivalent:

1. R is quasi-unmixed.
2. There exist an ideal B in R and a prime ideal P of $\mathcal{R}=\mathcal{R}(R, B)$ such that R is a quasi-subspace of \mathcal{R}_P and \mathcal{R}_P is quasi-unmixed.
3. There exists an ideal B in R such that \mathcal{R}_P is quasi-unmixed, where $\mathcal{R}=\mathcal{R}(R, B)$ and \mathcal{M} is the maximal homogeneous ideal of \mathcal{R}.
4. For every ideal B of R that is generated by a system of parameters, R is a quasi-subspace of $\mathcal{R}_{(M, u)}\mathcal{M}$, where $\mathcal{R}=\mathcal{R}(R, B)$.

4' There exists an ideal B of R that is generated by a system of parameters such that R is a quasi-subspace of $\mathcal{R}_{(M, u)}\mathcal{M}$, where $\mathcal{R}=\mathcal{R}(R, B)$.

Corollary 9. Let (R, M) be a local ring with completion (R^*, M^*). Let B be an M-primary ideal of R that is generated by a system of parameters. Let $\mathcal{R}=\mathcal{R}(R, B)$ and $\mathcal{R}^*=\mathcal{R}(R^*, BR^*)$. Then R is quasi-unmixed if and only if $(M^*, u)\mathcal{R}^*$ contains all minimal prime divisors of zero in \mathcal{R}.

Proof. Use Corollary 8 ((1) and (4')) and Lemma 3. Q.E.D.

Bibliography

Department of Mathematics, University of Missouri-Rolla, Rolla, Missouri 65401