Distortions properties of alpha-starlike functions
HTML articles powered by AMS MathViewer
- by Sanford S. Miller
- Proc. Amer. Math. Soc. 38 (1973), 311-318
- DOI: https://doi.org/10.1090/S0002-9939-1973-0310222-X
- PDF | Request permission
Abstract:
Let $\alpha$ be real and suppose that $f(z) = z + \Sigma _2^\infty {a_n}{z^n}$ is regular in the unit disc $D$ with $f(z)f’(z) \ne 0$ in $0 < |z| < 1$. If $\operatorname {Re} [(1 - \alpha )zf’(z)/f(z) + \alpha ((zf''(z)/f’(z)) + 1)] > 0$ for $z \in D$, then $f(z)$ is said to be an alpha-starlike function. These functions are univalent and they very naturally unify the classes of starlike $(\alpha = 0)$ and convex $(\alpha = 1)$ functions. The author obtains the $\tfrac {1}{4}$-theorem, sharp bounds on $|f(z)|$ and $|f’(z)|$, and growth conditions on $M(r)$.References
- Sanford S. Miller, Petru Mocanu, and Maxwell O. Reade, All $\alpha$-convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37 (1973), 553–554. MR 313490, DOI 10.1090/S0002-9939-1973-0313490-3
- Petru T. Mocanu, Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica (Cluj) 11(34) (1969), 127–133 (French). MR 273000 V. Paatero, Über die Konforme Abbildungen von Gebieten deren Ränder von beschränkter Drehung sind, Ann. Acad. Sci. Fenn. A 33 (1931), no. 9.
- Ch. Pommerenke, On starlike and convex functions, J. London Math. Soc. 37 (1962), 209–224. MR 137830, DOI 10.1112/jlms/s1-37.1.209
- W. Seidel, Über die Ränderzuordnung bei konformen Abbildungen, Math. Ann. 104 (1931), no. 1, 182–243 (German). MR 1512661, DOI 10.1007/BF01457932
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 38 (1973), 311-318
- MSC: Primary 30A32
- DOI: https://doi.org/10.1090/S0002-9939-1973-0310222-X
- MathSciNet review: 0310222