## Multivalued nonexpansive mappings and Opial’s condition

HTML articles powered by AMS MathViewer

- by E. Lami Dozo
- Proc. Amer. Math. Soc.
**38**(1973), 286-292 - DOI: https://doi.org/10.1090/S0002-9939-1973-0310718-0
- PDF | Request permission

## Abstract:

We give relations between a condition introduced by Z. Opial which characterizes weak limits by means of the norm in some Banach spaces and approximations of the identity, in particular for systems of projections. Finally a fixed point theorem for multivalued nonexpansive mappings in a Banach space satisfying this condition is proved; this result generalizes those of J. Markin and F. Browder.## References

- Nadim A. Assad and W. A. Kirk,
*Fixed point theorems for set-valued mappings of contractive type*, Pacific J. Math.**43**(1972), 553–562. MR**341459**, DOI 10.2140/pjm.1972.43.553 - Felix E. Browder,
*Nonlinear operators and nonlinear equations of evolution in Banach spaces*, Nonlinear functional analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968) Amer. Math. Soc., Providence, R.I., 1976, pp. 1–308. MR**0405188** - Mahlon M. Day,
*Reflexive Banach spaces not isomorphic to uniformly convex spaces*, Bull. Amer. Math. Soc.**47**(1941), 313–317. MR**3446**, DOI 10.1090/S0002-9904-1941-07451-3 - J.-P. Gossez and E. Lami Dozo,
*Structure normale et base de Schauder*, Acad. Roy. Belg. Bull. Cl. Sci. (5)**55**(1969), 673–681 (French, with English summary). MR**256136** - J.-P. Gossez and E. Lami Dozo,
*Some geometric properties related to the fixed point theory for nonexpansive mappings*, Pacific J. Math.**40**(1972), 565–573. MR**310717**, DOI 10.2140/pjm.1972.40.565 - W. A. Kirk,
*A fixed point theorem for mappings which do not increase distances*, Amer. Math. Monthly**72**(1965), 1004–1006. MR**189009**, DOI 10.2307/2313345 - Jack T. Markin,
*A fixed point theorem for set valued mappings*, Bull. Amer. Math. Soc.**74**(1968), 639–640. MR**227825**, DOI 10.1090/S0002-9904-1968-11971-8 - Roger D. Nussbaum,
*Some fixed point theorems*, Bull. Amer. Math. Soc.**77**(1971), 360–365. MR**284888**, DOI 10.1090/S0002-9904-1971-12694-0 - Zdzisław Opial,
*Weak convergence of the sequence of successive approximations for nonexpansive mappings*, Bull. Amer. Math. Soc.**73**(1967), 591–597. MR**211301**, DOI 10.1090/S0002-9904-1967-11761-0

## Bibliographic Information

- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**38**(1973), 286-292 - MSC: Primary 47H10; Secondary 46B05
- DOI: https://doi.org/10.1090/S0002-9939-1973-0310718-0
- MathSciNet review: 0310718