Multivalued nonexpansive mappings and Opial’s condition
HTML articles powered by AMS MathViewer
- by E. Lami Dozo
- Proc. Amer. Math. Soc. 38 (1973), 286-292
- DOI: https://doi.org/10.1090/S0002-9939-1973-0310718-0
- PDF | Request permission
Abstract:
We give relations between a condition introduced by Z. Opial which characterizes weak limits by means of the norm in some Banach spaces and approximations of the identity, in particular for systems of projections. Finally a fixed point theorem for multivalued nonexpansive mappings in a Banach space satisfying this condition is proved; this result generalizes those of J. Markin and F. Browder.References
- Nadim A. Assad and W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math. 43 (1972), 553–562. MR 341459, DOI 10.2140/pjm.1972.43.553
- Felix E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Nonlinear functional analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968) Amer. Math. Soc., Providence, R.I., 1976, pp. 1–308. MR 0405188
- Mahlon M. Day, Reflexive Banach spaces not isomorphic to uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 313–317. MR 3446, DOI 10.1090/S0002-9904-1941-07451-3
- J.-P. Gossez and E. Lami Dozo, Structure normale et base de Schauder, Acad. Roy. Belg. Bull. Cl. Sci. (5) 55 (1969), 673–681 (French, with English summary). MR 256136
- J.-P. Gossez and E. Lami Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40 (1972), 565–573. MR 310717, DOI 10.2140/pjm.1972.40.565
- W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006. MR 189009, DOI 10.2307/2313345
- Jack T. Markin, A fixed point theorem for set valued mappings, Bull. Amer. Math. Soc. 74 (1968), 639–640. MR 227825, DOI 10.1090/S0002-9904-1968-11971-8
- Roger D. Nussbaum, Some fixed point theorems, Bull. Amer. Math. Soc. 77 (1971), 360–365. MR 284888, DOI 10.1090/S0002-9904-1971-12694-0
- Zdzisław Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597. MR 211301, DOI 10.1090/S0002-9904-1967-11761-0
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 38 (1973), 286-292
- MSC: Primary 47H10; Secondary 46B05
- DOI: https://doi.org/10.1090/S0002-9939-1973-0310718-0
- MathSciNet review: 0310718