Direct products and sums of torsion-free Abelian groups
HTML articles powered by AMS MathViewer
- by C. E. Murley
- Proc. Amer. Math. Soc. 38 (1973), 235-241
- DOI: https://doi.org/10.1090/S0002-9939-1973-0311800-4
- PDF | Request permission
Abstract:
Let $A$ be a finite rank, indecomposable torsion-free Abelian group whose $p$-ranks are less than two for all primes $p$. Let $G$ be a direct product of copies of $A$, and $B$ be a nonzero countable pure subgroup of $G$ such that $B$ is the span of the homomorphic images of $A$ in $B$. Then it is shown that $B$ is a direct sum of copies of $A$. This result is applied to obtain a Krull-Schmidt theorem for direct sums of groups $A$ from a semirigid class of groups. In particular, if the groups $A$ have rank one, then the well-known BaerKulikov-Kaplansky theorem is obtained.References
- Reinhold Baer, Abelian groups without elements of finite order, Duke Math. J. 3 (1937), no. 1, 68–122. MR 1545974, DOI 10.1215/S0012-7094-37-00308-9
- Bernard Charles, Sous-groupes fonctoriels et topologies, Studies on Abelian Groups (Symposium, Montpellier, 1967) Springer, Berlin, 1968, pp. 75–92 (French). MR 0240195
- D. W. Dubois, Cohesive groups and $p$-adic integers, Publ. Math. Debrecen 12 (1965), 51–58. MR 220823, DOI 10.5486/pmd.1965.12.1-4.07
- L. Fuchs, Abelian groups, Publishing House of the Hungarian Academy of Sciences, Budapest, 1958. MR 0106942
- László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. MR 0255673
- Bjarni Jónsson, On direct decomposition of torsion free Abelian groups, Math. Scand. 7 (1959), 361–371. MR 122872, DOI 10.7146/math.scand.a-10582
- Irving Kaplansky, Projective modules, Ann. of Math. (2) 68 (1958), 372–377. MR 0100017, DOI 10.2307/1970252
- George Kolettis, Homogeneously decomposable modules, Studies on Abelian Groups (Symposium, Montpellier, 1967) Springer, Berlin, 1968, pp. 223–238. MR 0244228
- L. Ya. Kulikov, On direct decompositions of groups, Amer. Math. Soc. Transl. (2) 2 (1956), 23–87. MR 0075951, DOI 10.1090/trans2/002/02
- C. E. Murley, The classification of certain classes of torsion free Abelian groups, Pacific J. Math. 40 (1972), 647–655. MR 322077
- Fred Richman, A class of rank-$2$ torsion free groups, Studies on Abelian Groups (Symposium, Montpellier, 1967) Springer, Berlin, 1968, pp. 327–333. MR 0244380
- R. B. Warfield Jr., A Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22 (1969), 460–465. MR 242886, DOI 10.1090/S0002-9939-1969-0242886-2
- R. B. Warfield Jr., An isomorphic refinement theorem for Abelian groups, Pacific J. Math. 34 (1970), 237–255. MR 266994
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 38 (1973), 235-241
- MSC: Primary 20K15
- DOI: https://doi.org/10.1090/S0002-9939-1973-0311800-4
- MathSciNet review: 0311800