DIRECT PRODUCTS AND SUMS OF TORSION-FREE
ABELIAN GROUPS

C. E. MURLEY

Abstract. Let A be a finite rank, indecomposable torsion-free Abelian group whose p-ranks are less than two for all primes p. Let G be a direct product of copies of A, and B be a nonzero countable pure subgroup of G such that B is the span of the homomorphic images of A in B. Then it is shown that B is a direct sum of copies of A. This result is applied to obtain a Krull-Schmidt theorem for direct sums of groups A from a semirigid class of groups. In particular, if the groups A have rank one, then the well-known Baer-Kulikov-Kaplansky theorem is obtained.

All groups in this paper are torsion-free Abelian groups. Let A be a group. Then the p-rank of A, $r_p(A)$, is the $\mathbb{Z}/p\mathbb{Z}$-dimension of A/pA for p a rational prime, $r(A)$ denotes the rank of A and A is called a J-group if every subgroup of finite index is isomorphic to A. Let \mathcal{E} denote the class of indecomposable groups A of finite rank such that $r_p(A) \leq 1$ for all primes p. For general information about the class \mathcal{E}, the reader is referred to §§4 and 5 of [10] where a slightly larger class of groups is studied. As in [2], a subfunctor of the identity $S(-)$ on \mathcal{A}, the category of \mathbb{Z}-modules, is called a socle if $S^2 = S$. Note that socles commute with direct sums. Let X be a set of groups and $G \in \text{ob}(\mathcal{A})$. Then $S_X(G) = \bigoplus \phi(A)$ where ϕ ranges over $\text{Hom}(A, G)$ and A over X defines a socle. We call $S_X(-)$ the socle associated with X. For all unexplained terminology, the reader is referred to [5].

1. The homogeneous case.

Lemma 1. $A \in \mathcal{E}$ if and only if A is a finite rank J-group such that every endomorphism is an integral multiple of an automorphism.

Proof. This is an easy consequence of Theorems 2 and 4 in [10].

Lemma 2. Let $A \in \mathcal{E}$, $G = \prod_{i \in I} A_i$ where $A_i \cong A$ for all i and D be a pure subgroup of G where $D \cong A$. Then D is a summand of G.
Proof. We let \(\pi_i \) denote the projection of \(G \) onto \(A_i \) and identify \(A_i \) with its natural injection in \(G \). Let \(i \) be an index such that \(\pi_i(D) \neq 0 \), \(\pi'_i \) denote the restriction of \(\pi_i \) to \(D \) and \(\lambda_i \) be an isomorphism on \(A_i \) onto \(D \). Then \(\lambda_i : \pi'_i \) is a nonzero endomorphism of \(D \) and so by Lemma 1, \(\lambda_i \pi'_i = n \theta_i \) for some automorphism \(\theta_i \) of \(D \) and \(n > 0 \). Let \(\phi_n = \theta_i^{-1} \lambda_i \pi'_i \). Then \(\phi_n \) restricted to \(D \) is just multiplication by the integer \(n \). We may assume that if \(pA = A \), then \(p \nmid n \). Let \(T \) be the set of prime divisors of \(n \) and for \(x \in G \), let \(H_p^G(x) \) denote the \(p \)-height of \(x \) in \(G \). For each \(p \in T \), there is an \(x_p \in D \) such that \(H_p^G(x_p) = 0 \) by the purity of \(D \) in \(G \). Let \(x_p = \langle a_j \rangle_{j \in I} \) where \(a_j \in A_j \). Then it follows that there is an index \(j \neq i \) such that \(H_p^A(a_j) = 0 \). If \(\lambda_j \) is an isomorphism on \(A_j \) onto \(D \), then again by Lemma 1, \(\lambda_j \pi'_j = n \theta_j \) for some automorphism \(\theta_j \) of \(D \) and \(n > 0 \). Let \(\phi_p = \theta_j^{-1} \lambda_j \pi'_j \). Then \(\phi_p \) restricted to \(D \) is multiplication by \(n_p \). Since \(H_p^A(\phi_p(x_p)) = H_p^G((\pi'_j(x_p)) = H_p^G(a_j) = 0 \), \(p \nmid n_p \). Thus, \(\{n\} \cup \{n_p \}_{p \in T} \) has a g.c.d. of 1 and so \(mn + \sum_{p \in T} m_p n_p = 1 \) for some integers \(m, m_p \). Let \(\phi = \sum_{p \in T} m_p \phi_p + m \phi_n \). Then \(\phi \) is a homomorphism on \(G \) into \(D \) such that \(\phi \) restricted to \(D \) is the identity map. Hence, \(D \) is a summand of \(G \).

Theorem 1. Let \(A \in \mathcal{E} \) and \(S(\mathcal{A}) \) be the socle associated with \(\{A\} \). Let \(G = \prod_{i \in \mathcal{I}} A_i \) where \(A_i \cong A_i \) for all \(i \) and \(B \) be a countable pure nonzero subgroup of \(G \). Then \(B \) is a direct sum of copies of \(A \) whenever \(S(B) = B \).

Proof. We decompose the proof into three steps; we let \(\pi_i \) denote the projection of \(G \) onto \(A_i \) and identify \(A_i \) with its natural injection in \(G \).

(i) If \(0 \neq \phi \in \text{Hom}(A, G) \), then there is a \(\lambda \in \text{Hom}(A, G) \) such that \(\lambda(A) = \text{PH}(\phi(A)) \), the pure hull of \(\phi(A) \) in \(G \). To prove this, let \(i \) be an index such that \(\pi_i \phi \neq 0 \), \(\lambda_i \) be an isomorphism on \(A_i \) onto \(A \) and \(\theta = \lambda_i \pi'_i \). Then \(\theta(A) = n A \) for some \(n > 0 \) by Lemma 1. It follows that \(\phi \) is monic and since \(r(A) < \infty \), \(\lambda_i \pi'_i \) is monic on \(\phi(A) \). Since \(\phi(A) \) is an essential subgroup of \(\text{PH}(\phi(A)) \), \(\lambda_i \pi'_i \) is monic on \(\text{PH}(\phi(A)) \). Since \(A \) is a J-group [Lemma 1] and \(n A \leq \lambda_i \pi'_i (\text{PH}(\phi(A))) \leq A \), \(\lambda_i \pi'_i (\text{PH}(\phi(A))) \leq A \) and so \(\phi(A) \leq \text{PH}(\phi(A)) \). Let \(\rho \) be an isomorphism on \(\phi(A) \) onto \(\text{PH}(\phi(A)) \). Then \(\lambda = \rho \phi \) is the desired map.

(ii) Any element of \(B \) is contained in a summand of \(B \) which is a finite direct sum of copies of \(A \). To prove this, note that since \(S(B) = B \), for each \(x \) in \(B \), there is a finite subset \(T_x \) of \(\text{Hom}(A, B) \setminus \{0\} \) such that \(x \in \sum_{\phi \in T_x} \phi(A) \). In view of (i) and the purity of \(B \) in \(G \), we may assume that for \(\phi \in T_x \), \(\phi(A) \) is a pure copy of \(A \) in \(B \). Let \(\lambda \in T_x \). Then \(\lambda(A) \) is a summand of \(G \) by Lemma 2 and so a summand of \(B \). Let \(B = \lambda(A) \oplus C \) and \(x = y + z \) for \(y \in \lambda(A), z \in C \). If \(\text{card}(T_x) = 1 \), then we are done. Assume (ii) is true for all \(x \) in \(B \) which have a \(T_x \subset \text{Hom}(A, B) \) with \(\text{card}(T_x) \leq n \). Suppose \(\text{card}(T_x) = n + 1 \). Let \(\pi \) be the projection on \(B \) onto \(C \). Then \(z \in \sum \pi \phi(A) \) where \(\phi \) ranges over \(T_x \setminus \{\lambda\} \). It follows from our assumption
that \(z \) is contained in a summand of \(C \) that is a finite direct sum of copies of \(A \), and, therefore, \(x \) is contained in a summand of \(B \) that is a finite direct sum of copies of \(A \).

(iii) To complete the proof of the theorem, we proceed as in [8, Theorem 2]. Let \(\lambda \) be an ordinal such that \(\lambda \leq \omega \), the first limit ordinal, and \(X = \{ x_i \}_{i < \lambda} \) be a maximal independent set of \(B \). In view of (ii), \(B = B_1 \oplus C_1 \) where \(x_i \in B_1 \), which is a finite direct sum of copies of \(A \). Let \(y_2 \) be the projection of \(x_2 \) on \(C_1 \). Then again by (ii), \(B = B_1 \oplus B_2 \oplus C_2 \) where \(y_2 \in B_2 \), which is a finite direct sum of copies of \(A \). Continuing in this way we obtain a pure subgroup, \(\oplus_{i < \lambda} B_i \), of \(B \) which contains \(X \). Hence, \(B = \oplus_{i < \lambda} B_i \), which completes the proof.

Corollary 1. Let \(A \in \mathcal{E} \), \(G = \bigoplus_{i \in I} A_i \) where \(A \cong A_i \) and \(S(_ _ _) \) be the socle associated with \(\{ A \} \). Then any countable nonzero pure subgroup \(B \) of \(G \) such that \(S(B) = B \) is a direct sum of copies of \(A \) and any nonzero summand of \(G \) is a direct sum of copies of \(A \).

Proof. The first part follows by observing that \(G \) is pure in \(\bigcap_{i \in I} A_i \) and applying Theorem 1. For the second part, let \(G = B \oplus C \). Then in view of Kaplansky [7], we may assume that \(B \) is countable. Now \(G = \bigoplus_{i \in I} S(A_i) = S(G) = S(B) \oplus S(C) \) where \(S(_ _ _) \) is the socle associated with \(\{ A \} \). Thus, \(B = S(B) \) and the result follows from the first part.

The countability hypothesis in Theorem 1 is a necessary condition as may be seen by considering the Specker group, i.e. a countably infinite product of copies of \(Z \). On the other hand, D. Arnold has informed me (unpublished) that the countability hypothesis in Corollary 1 is unnecessary. This is easy to see when the group \(A \) in Corollary 1 is strongly homogeneous. Although this is a special case of D. Arnold’s result, it seems worthwhile to make this short proof available. Recall that a group \(A \) is strongly homogeneous [11] if given two rank one, pure subgroups of \(A \), there is an automorphism of \(A \) which induces an isomorphism between these two groups. The structure of the strongly homogeneous groups in \(\mathcal{E} \) is known, in view of [11, Theorem 4] and [10, Theorem 5].

Theorem 2. Let \(A \) be a strongly homogeneous group in \(\mathcal{E} \), \(S(_ _ _) \) be the socle associated with \(\{ A \} \) and \(G \) be a direct sum of copies of \(A \). Then a pure subgroup \(B \) of \(G \) is a direct sum of copies of \(A \) whenever \(S(B) = B \neq 0 \).

Proof. We may assume that \(A \) is reduced. Let \(R \) be the endomorphism ring of some reduced group in \(\mathcal{E} \). Then \(R \) is a Principal Ideal Domain [P.I.D.] and \(Z \) is dense in \(R \) with respect to the \(Z \)-adic topology (see [10, Corollary 7]). The denseness of \(Z \) in \(R \) implies that a reduced \(Z \)-module is a (unitary) \(R \)-module in at most one way and that given two \(R \)-modules \(M \) and \(N \) which are reduced as \(Z \)-modules, the \(R \)-homomorphisms
and Z-homomorphisms of M into N coincide. In addition, suppose that N is a torsion-free R-module and M is an R-submodule. Then M is a pure R-submodule of N whenever M is a pure subgroup of N (since every element of R is an associate of an integer by Lemma 1). Now a necessary and sufficient condition that a group in \mathcal{E} be strongly homogeneous is that it be a rank one, torsion-free module over its endomorphism ring (see [10, Theorem 5]). Hence, if $R = \text{End}(A)$, then G is a torsion-free R-module which is a direct sum of isomorphic rank one R-submodules, i.e. G is a homogeneous, completely decomposable R-module. The condition that $S(B) = B$ implies that B is a sum of R-submodules of G and so B is an R-submodule of G. Since B is a pure subgroup of G, B is a pure R-submodule of G. The proof is completed by applying the well-known theorem of Baer [1], i.e. pure submodules of homogeneous, completely decomposable R-modules are completely decomposable, to B. Here, of course, we need that R is a P.I.D.

Since a pure subgroup of a group in \mathcal{E} is a direct sum of groups in \mathcal{E}, one might expect a pure subgroup of G, which is as in Corollary 1, to be a direct sum of groups in \mathcal{E}. We give an example of a group $G = A \oplus A \oplus A$ for some $A \in \mathcal{E}$ which has a pure indecomposable B not in \mathcal{E}:

Let p_1, p_2, p_3 be distinct primes and $A \in \mathcal{E}$ such that $r(A) = 3, r(p_1^0 A) = 2$ for $i = 1, 2, 3$, $r(p_1^0 A \cap p_i^0 A) = 1$ for $i \neq j$, $\bigcap_{i=1}^3 p_i^0 A = \{0\}$, and $p^0 A = \{0\}$ for $p \neq p_i$. Such a group A exists by the construction in Example 2 [10]. Let $G = A_1 \oplus A_2 \oplus A_3$ where $A_i \cong A$ and $0 \neq a_i \in p_{i1}^0 A_1 \cap p_{i2}^0 A_1$, $0 \neq a_2 \in p_{i1}^0 A_2 \cap p_{i2}^0 A_2$, $0 \neq a_3 \in p_{i1}^0 A_3 \cap p_{i3}^0 A_3$. Now let $C = \bigoplus_{i=1}^3 \text{PH}^O(a_i)$ where $\text{PH}^O(a_i)$ denotes the pure hull of (a_i) in G. Then C contains an indecomposable pure subgroup B of rank 2, e.g. take $B = \text{PH}^C(b_1, b_2)$ where $b_1 = a_1 + a_2$, $b_2 = a_2 + a_3$ and show that B is indecomposable as in Erdös’ example [4, p. 166]. Since $r_p(C) = 3$ for $p \neq p_i$ and $r_p(C/B) \leq 1$, $r_p(B) \geq 2$ for $p \neq p_i$, i.e. $B \notin \mathcal{E}$.

2. Semirigid subclasses of \mathcal{E}. We call, as in Charles [2], a class of groups $\{A_i\}_{i \in I}$ semirigid if I can be partially ordered such that for $i, j \in I$, $i \leq j$ if and only if $\text{Hom}(A_i, A_j) \neq 0$. Let $\mathcal{F} = \{A_i\}_{i \in I}$ be a semirigid class and G be a direct sum of groups, each isomorphic to some group in \mathcal{F}. Then $G = \bigoplus_{i \in I} G(i)$ where $G(i)$ is either the zero group or a direct sum of copies of A_i. We call $G(i)$ an A_i-homogeneous component of G. If $S_i(-)$ and $S_i^*(\cdot)$ are the socles associated with $\{A_j \in \mathcal{F} | j \geq i\}$ and $\{A_j \in \mathcal{F} | j > i\}$ respectively, then it is easily checked that $S_i(G)/S_i^*(G) \cong G(i)$. Thus, an A_i-homogeneous component of G is unique up to isomorphism. A modest argument, which uses Kaplansky [7] and involves computations with the socles $S_i(-)$ and $S_i^*(-)$, gives the following special version of Charles [2, Theorem 2.13]: Let $\mathcal{F} = \{A_i\}_{i \in I}$ be a semirigid class of countable groups, G be a direct sum of groups, each isomorphic
to some group in \mathcal{F}, and $G = \bigoplus_{i \in I} G(i)$. Then for any summand B of G, $B = \bigoplus_{i \in I} B(i)$ where $B(i)$ is isomorphic to a summand of $G(i)$.

Theorem 3. Let \mathcal{F} be a semirigid subclass of \mathcal{E} and $G = \bigoplus_{i \in I} A_i$ where each A_i is isomorphic to some group in \mathcal{F}. Then any direct sum decomposition of G refines to a decomposition isomorphic the given decomposition. Equivalently, any nonzero summand of G is a direct sum of groups, each isomorphic to one of the original summands A_i.

Proof. Since the A-homogeneous components of G are isomorphic for a fixed A in \mathcal{F}, the theorem is immediate from the above version of Charles' theorem and Corollary 1.

Although \mathcal{E} has abundant semirigid subclasses, it is easy to see that \mathcal{E} is not itself a semirigid class. On the other hand, for $\mathcal{F} \subset \mathcal{E}$, it is not clear that the semirigidity of \mathcal{F} is necessary for Theorem 3 to hold. In fact, if the hypotheses of Theorem 3 are suitably altered, then it should be possible to obtain a theorem similar to ours without requiring \mathcal{F} to be semirigid. For example, let $\mathcal{F} = \{A, B\}$ such that $A \not\cong B$, $\text{Hom}(A, B) \neq 0$ and $\text{Hom}(B, A) \neq 0$ (the existence of such a pair of groups will be clear from a later example). Then \mathcal{F} is not semirigid and since A and B are indecomposable J-groups, A and B are strongly indecomposable groups, i.e. subgroups of finite index are indecomposable. It follows from Jónsson [6] that the Krull-Schmidt theorem holds for $G = A \oplus B$.

In the remainder of this section we consider some semirigid subclasses of \mathcal{E} which appear to be of interest. Since a semirigid class cannot, as defined, contain two distinct isomorphic groups, we will always identify the isomorphic groups in any given class of groups. Let \mathcal{E} denote the local subring of the rationals \mathbb{Q} determined by the prime p and \mathbb{Z}_p^* denote the ring of p-adic integers. Recall that for a group A, $r_p(A) = 1$ and $p^0A = 0$ if and only if $\mathbb{Z}_p \otimes A$ is a pure subgroup of \mathbb{Z}_p^*. Such groups are precisely the p-pure subgroups of \mathbb{Z}_p^*, which are necessarily indecomposable (since the pure subgroups of \mathbb{Z}_p^* are indecomposable).

Definition. $\mathcal{F}_p = \{A \in \mathcal{E} \mid p^0A = 0\}$ for a fixed prime p and let \mathcal{C} be the class of finite rank, indecomposable groups A such that the nonzero homomorphisms on A into reduced groups are monic. The groups in \mathcal{C} are called cohesive groups [3].

Lemma 3. $\mathcal{C} \cup \mathcal{F}_p$ is a semirigid subclass of \mathcal{E} such that $\mathcal{C} \setminus \mathcal{F}_p$ and $\mathcal{F}_p \setminus \mathcal{C}$ are uncountable sets.

Proof. It is well known that $\mathcal{C} = \{A \in \mathcal{E} \mid pA \not\cong A\}$ implies $p^0A = 0$ (see [3]) and it is immediate from [10, Example 2] that the complements are uncountable. Let A, $B \in \mathcal{F}_p$ and $0 \neq \phi \in \text{Hom}(A, B)$. Then $0 \neq \text{id} \otimes \phi : \mathbb{Z}_p \otimes A \to \mathbb{Z}_p \otimes B$ is monic, since it is multiplication by a nonzero p-adic
integer, and so \(\phi \) is monic. Since the groups in \(\mathcal{E} \) are \(J \)-groups, it follows that \(\mathcal{C} \) and \(\mathcal{F}p \) are semirigid subclasses of \(\mathcal{E} \). On the other hand, if \(A \in \mathcal{C} \setminus \mathcal{F}p \), then \(pA = A \) and so \(\text{Hom}(A, B) = 0 \) for \(B \in \mathcal{F}p \). It follows that \(\mathcal{C} \cup \mathcal{F}p \) is semirigid.

Corollary 2. If \(G = \bigoplus_{i \in I} A_i \) where \(A_i \in \mathcal{C} \cup \mathcal{F}p \), then any direct sum decomposition of \(G \) refines to the given decomposition and any nonzero summand of \(G \) is a direct sum of subgroups isomorphic to the \(A_i \).

Remark. Since the rank one groups are cohesive, a special case of Corollary 2 is the Baer-Kulikov-Kaplansky theorem, i.e. direct summands of completely decomposable groups are completely decomposable (see [1], [9], [7]). In addition, Proposition 4 in [12] is the special case of Corollary 2 where the summands \(A_i \) are from the class of finite rank, pure subgroups of \(\mathbb{Z}p^* \) (\(p \) fixed), which we symbolically denote by \(\mathbb{Z}p \mathcal{F}p \). It follows from [12, Proposition 1], [11, Theorem 4] and [10, Corollary 9] that a reduced group \(A \) in \(\mathcal{E} \) has the (finite) exchange property (see [12]) if and only if \(A \in \mathbb{Z}p \mathcal{F}p \) for some prime \(p \). R. B. Warfield has given in [13] a Krull-Schmidt theorem for direct sums of arbitrary Abelian groups which, in particular, have the finite exchange property. Therefore, Theorem 3 coincides with [13, Theorem 2] only in the case where the semirigid class \(\mathcal{F} \) in Theorem 3 is a subclass of \(\{Q\} \cup \{\mathbb{Z}p \mathcal{F}p\} \), \(p \) primes. Finally, we note another special case of Corollary 2 by observing that \(\mathcal{C} \) contains the strongly homogeneous groups in \(\mathcal{E} \).

Let \(n > 0 \) and \(\mathcal{E}_n \) denote the class of rank \(n \) groups in \(\mathcal{E} \), e.g. \(\mathcal{E}_1 \) is precisely the class of rank one groups. Then \(\mathcal{E}_n \) is semirigid if and only if \(n = 1 \). To see this, let \(n > 1 \) and we exhibit two groups \(A \) and \(B \) in \(\mathcal{E}_n \) such that \(\text{Hom}(A, B) \neq 0 \) and \(\text{Hom}(B, A) \neq 0 \) but \(A \neq B \):

Let \(p, q \) be distinct primes, \(A \in \mathcal{F}p \cap \mathcal{E}_n \), \(B \in \mathcal{F}q \cap \mathcal{E}_n \) such that \(r(q^oA) = r(p^oB) = n - 1 \) and \(A \), \(B \) are divisible by all other primes. Such groups are easy to construct (see [10, Example 2]) and clearly \(A \neq B \).

Since \(A|q^oA \cong \mathbb{Z}q \) and \(B|p^oB \cong \mathbb{Z}p \), \(A|q^oA \rightarrow B \) and \(B|p^oB \rightarrow A \).

In particular, this example shows that for \(n > 1 \) and \(p \neq q \), \((\mathcal{F}p \cup \mathcal{F}q) \cap \mathcal{E}_n \) is not semirigid. Since the set of all semirigid subclasses of \(\mathcal{E}_n \) (with inclusion as a P.O.) is inductive, every semirigid subclass of \(\mathcal{E}_n \) is contained in a maximal semirigid [m.s.r.] subclass of \(\mathcal{E}_n \). Thus, for each prime \(p \), \(\mathcal{F}p \cap \mathcal{E}_n \) is contained in an m.s.r. subclass of \(\mathcal{E}_n \) and so for \(n > 0 \), in view of the above example, there are an infinite number of distinct m.s.r. subclasses of \(\mathcal{E}_n \). Now \(\mathcal{C} \cap \mathcal{E}_n \) is uncountable (see [3] or [10]) and it is easy to see that \(\mathcal{C} \cap \mathcal{E}_n \) is contained in every m.s.r. subclass of \(\mathcal{E}_n \). Thus, every m.s.r. subclass of \(\mathcal{E}_n \) is uncountable. Although we are unable to identify the m.s.r. subclasses of \(\mathcal{E}_n \), we note in the following lemma what appears to be a fairly large semirigid subclass of \(\mathcal{E}_n \).
Lemma 4. Let $n > 2$ and $\mathcal{F} = \{ A \in \mathcal{S}_n | pA \neq A \text{ implies } r(p^nA) < [n/2] \}$. Then \mathcal{F} is a semirigid class where $\mathcal{F} \setminus (\mathcal{C} \cup \mathcal{P})$ is an uncountable set.

Proof. That the complement is uncountable is immediate from [10, Example 2]. For $A, B \in \mathcal{F}$ and $0 \neq \phi \in \text{Hom}(A, B)$, it is a modest computation, which uses the relation $r_p(A) = r_p(\ker \phi) + r_p(\phi(A))$, to show ϕ is monic. Hence, \mathcal{F} is semirigid.

References

Department of Mathematics, University of Victoria, Victoria, B.C., Canada