## Equivalence of integrals

HTML articles powered by AMS MathViewer

- by J. A. Chatfield
- Proc. Amer. Math. Soc.
**38**(1973), 279-285 - DOI: https://doi.org/10.1090/S0002-9939-1973-0311847-8
- PDF | Request permission

## Abstract:

Suppose $R$ is the set of real numbers and $N$ is the set of nonnegative real numbers, each of $G$ and $F$ is a function from $R \times R$ to $N$. All integrals considered are of the subdivision-refinement type. This paper gives necessary and sufficient conditions for $\int _a^b {F = } \int _a^b G$. A necessary and sufficient condition for $\int _a^b {{G^2} = 0}$ is also given.## References

- W. P. Davis and J. A. Chatfield,
*Concerning product integrals and exponentials*, Proc. Amer. Math. Soc.**25**(1970), 743–747. MR**267068**, DOI 10.1090/S0002-9939-1970-0267068-8 - Burrell W. Helton,
*Integral equations and product integrals*, Pacific J. Math.**16**(1966), 297–322. MR**188731** - T. H. Hildebrandt,
*Definitions of Stieltjes Integrals of the Riemann Type*, Amer. Math. Monthly**45**(1938), no. 5, 265–278. MR**1524276**, DOI 10.2307/2302540 - J. S. MacNerney,
*Integral equations and semigroups*, Illinois J. Math.**7**(1963), 148–173. MR**144179** - J. S. MacNerney,
*Stieltjes integrals in linear spaces*, Ann. of Math. (2)**61**(1955), 354–367. MR**67354**, DOI 10.2307/1969918 - J. S. MacNerney,
*Continuous products in linear spaces*, J. Elisha Mitchell Sci. Soc.**71**(1955), 185–200. MR**79234** - J. W. Neuberger,
*Continuous products and nonlinear integral equations*, Pacific J. Math.**8**(1958), 529–549. MR**102723** - H. L. Smith,
*On the existence of the Stieltjes integral*, Trans. Amer. Math. Soc.**27**(1925), no. 4, 491–515. MR**1501324**, DOI 10.1090/S0002-9947-1925-1501324-5 - H. S. Wall,
*Concerning continuous continued fractions and certain systems of Stieltjes integral equations*, Rend. Circ. Mat. Palermo (2)**2**(1953), 73–84. MR**59460**, DOI 10.1007/BF02871679 - H. S. Wall,
*Concerning harmonic matrices*, Arch. Math. (Basel)**5**(1954), 160–167. MR**61268**, DOI 10.1007/BF01899333
W. H. Young,

*On integration with respect to a function of bounded variation*, Proc. London Math. Soc. (2)

**13**(1914), 109-150.

## Bibliographic Information

- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**38**(1973), 279-285 - MSC: Primary 26A39
- DOI: https://doi.org/10.1090/S0002-9939-1973-0311847-8
- MathSciNet review: 0311847