Equivalence of integrals
HTML articles powered by AMS MathViewer
- by J. A. Chatfield
- Proc. Amer. Math. Soc. 38 (1973), 279-285
- DOI: https://doi.org/10.1090/S0002-9939-1973-0311847-8
- PDF | Request permission
Abstract:
Suppose $R$ is the set of real numbers and $N$ is the set of nonnegative real numbers, each of $G$ and $F$ is a function from $R \times R$ to $N$. All integrals considered are of the subdivision-refinement type. This paper gives necessary and sufficient conditions for $\int _a^b {F = } \int _a^b G$. A necessary and sufficient condition for $\int _a^b {{G^2} = 0}$ is also given.References
- W. P. Davis and J. A. Chatfield, Concerning product integrals and exponentials, Proc. Amer. Math. Soc. 25 (1970), 743–747. MR 267068, DOI 10.1090/S0002-9939-1970-0267068-8
- Burrell W. Helton, Integral equations and product integrals, Pacific J. Math. 16 (1966), 297–322. MR 188731
- T. H. Hildebrandt, Definitions of Stieltjes Integrals of the Riemann Type, Amer. Math. Monthly 45 (1938), no. 5, 265–278. MR 1524276, DOI 10.2307/2302540
- J. S. MacNerney, Integral equations and semigroups, Illinois J. Math. 7 (1963), 148–173. MR 144179
- J. S. MacNerney, Stieltjes integrals in linear spaces, Ann. of Math. (2) 61 (1955), 354–367. MR 67354, DOI 10.2307/1969918
- J. S. MacNerney, Continuous products in linear spaces, J. Elisha Mitchell Sci. Soc. 71 (1955), 185–200. MR 79234
- J. W. Neuberger, Continuous products and nonlinear integral equations, Pacific J. Math. 8 (1958), 529–549. MR 102723
- H. L. Smith, On the existence of the Stieltjes integral, Trans. Amer. Math. Soc. 27 (1925), no. 4, 491–515. MR 1501324, DOI 10.1090/S0002-9947-1925-1501324-5
- H. S. Wall, Concerning continuous continued fractions and certain systems of Stieltjes integral equations, Rend. Circ. Mat. Palermo (2) 2 (1953), 73–84. MR 59460, DOI 10.1007/BF02871679
- H. S. Wall, Concerning harmonic matrices, Arch. Math. (Basel) 5 (1954), 160–167. MR 61268, DOI 10.1007/BF01899333 W. H. Young, On integration with respect to a function of bounded variation, Proc. London Math. Soc. (2) 13 (1914), 109-150.
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 38 (1973), 279-285
- MSC: Primary 26A39
- DOI: https://doi.org/10.1090/S0002-9939-1973-0311847-8
- MathSciNet review: 0311847