The six dimensional Gauss Bonnet integrand
HTML articles powered by AMS MathViewer
- by Alfred Gray
- Proc. Amer. Math. Soc. 38 (1973), 374-380
- DOI: https://doi.org/10.1090/S0002-9939-1973-0312444-0
- PDF | Request permission
Abstract:
Sufficient conditions are given for a compact $6$-dimensional Kähler manifold with nonnegative (nonpositive) curvature to have nonnegative (nonpositive) Euler characteristic.References
- Marcel Berger, Sur quelques variétés riemanniennes suffisamment pincées, Bull. Soc. Math. France 88 (1960), 57–71 (French). MR 133781
- R. L. Bishop and S. I. Goldberg, Some implications of the generalized Gauss-Bonnet theorem, Trans. Amer. Math. Soc. 112 (1964), 508–535. MR 163271, DOI 10.1090/S0002-9947-1964-0163271-8
- Shiing-shen Chern, On curvature and characteristic classes of a Riemann manifold, Abh. Math. Sem. Univ. Hamburg 20 (1955), 117–126. MR 75647, DOI 10.1007/BF02960745
- Alfred Gray, Some relations between curvature and characteristic classes, Math. Ann. 184 (1969/70), 257–267. MR 261492, DOI 10.1007/BF01350854
- François Rideau, Un théorème sur la courbure holomorphe bissectionnelle, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A887–A889 (French). MR 259824
- John A. Thorpe, Some remarks on the Gauss-Bonnet integral, J. Math. Mech. 18 (1969), 779–786. MR 0256307
- K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies, No. 32, Princeton University Press, Princeton, N. J., 1953. MR 0062505
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 38 (1973), 374-380
- MSC: Primary 53C55
- DOI: https://doi.org/10.1090/S0002-9939-1973-0312444-0
- MathSciNet review: 0312444