ON THE HOMOTOPY TYPE OF IRREGULAR SETS
P. F. DUVALL, JR. AND L. S. HUSCH

Abstract. If M is an open connected manifold and h is a homeomorphism of M onto itself such that h is positively regular on M and the set of irregular points, Irr(h), is a nonseparating compactum, then it is shown that Irr(h) is a strong deformation retract of M.

1. Introduction. If (X, d) is a metric space and h is a homeomorphism (continuous map) of X into itself, h is regular (positively regular) at p ∈ X if, for each ε > 0, there exists δ > 0 such that d(p, q) < δ implies that d(h^n(p), h^n(q)) < ε for all integers n (positive integers n). Let Irr(h) denote the set of points at which h fails to be regular. If X is an open connected manifold, h is a homeomorphism of X onto itself which is positively regular at each point of X, and if Irr(h) is a compact zero dimensional nonempty subset of X, it follows from [6] that Irr(h) contains a single point and X is homeomorphic to Euclidean n-space.

If P is a compact polyhedron in Euclidean space and X is an open regular neighborhood of P, the homeomorphism which pushes along the mapping cylinder structure toward P is positively regular on X and Irr(h) = P. In [1] and [2], we investigated the problem of the converse of this construction. However in [1] and [2], we limited our considerations to the case when h|Irr(h) is periodic and were able to show that Irr(h) is a strong deformation retract of X. In this note, we remove the condition that h|Irr(h) is periodic.

2. A retraction theorem. Let M be a locally compact metric space and let f: M → M be a map which is positively regular at each point. For x ∈ M, let O(x) = cl{f^n(x)} for i = 1, ..., 0 and let K(x) = ∩ i=0 O(f^n(x)). Given y, z ∈ O(x), define y • z = lim i→+∞ f^i(y) for z ∈ K(x). We summarize some facts from [3].

Theorem 1. If O(x) is compact, then the product described above is well-defined and O(x) with this product is a commutative topological semigroup. K(x) is a topological subgroup of O(x). If y ∈ K(x), then K(y) = O(y) = K(x).

With notation as above, let C = ∪ x∈M K(x). For each x ∈ M, let e_x be the identity element in K(x) with respect to the product structure from

Received by the editors May 30, 1972.
1 Research supported in part by NSF grant GP-33872.

© American Mathematical Society 1973
419

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
O(x). [Note that even though $K(x)$ might be equal to $K(y)$ for some $x \neq y$, their product structures might be different.] If $x \in C$, it follows from Theorem 1 that $x \in K(x)$ and since $x = \lim_{t \to +\infty} f^t(x), x = e_x$. Define a function $r: M \to C$ by $r(x) = e_x$.

Theorem 2. If, for each $x \in M$, $O(x)$ is compact, then r is a retraction of M onto C.

Proof. By the remarks above, $r|C$ is the identity map. We proceed to show that r is continuous at $x \in M$. For $y \in M$, let

$$A(y) = \left\{ p \in K(y) \mid p = \lim_{t \to +\infty} f^t_n(y) \text{ where } \lim_{t \to +\infty} f^t_n(x) = e_x \right\}.$$

Choose any increasing sequence \(\{n_i\}_{i=1}^{\infty} \) such that $e_x = \lim_{i \to +\infty} f^{n_i}(x)$. Since $O(y)$ is compact, \(\{f^{n_i}(y)\} \) has a subsequence which converges to a point in $K(y)$; hence $A(y)$ is nonempty. We claim that $A(y)$ is closed; suppose that $p = \lim_{i \to +\infty} p_i$, where $p_i \in A(y)$, $\rho_i = \lim_{j \to +\infty} f^{n_i(j)}(y)$ and $\rho_j = \lim_{j \to +\infty} f^{n_j(i)}(x) = e_x$. For each i, choose j_i such that $d(f^{n_i(j_i)}(x), e_x) < 1/i$ and $d(f^{n_j(j_i)}(y), p_i) < 1/i$. Therefore $\lim_{i \to +\infty} f^{n_i(j_i)}(x) = e_x$ and $\lim_{i \to +\infty} f^{n_i(j_i)}(y) = p$ so that $p \in A(y)$ and $A(y)$ is closed.

Suppose $p = \lim_{i \to +\infty} f^{n_i}(y)$ and $q = \lim_{i \to +\infty} f^{m_i}(y)$ where $e_x = \lim_{i \to +\infty} f^{n_i}(x) = \lim_{i \to +\infty} f^{m_i}(x)$. Since $e_x = e_y \cdot e_x = \lim_{i \to +\infty} f^{n_i+m_i}(x), p \cdot q \in A(y)$. Therefore $A(y)$ is a subsemigroup of $K(y)$. Since $A(y)$ is compact, $A(y)$ contains an idempotent [7, p. 22] which must be e_y.

Let $\varepsilon > 0$ be given and let $\delta > 0$ be such that $d(x, y) < \delta$ implies

$$d(f^t(x), f^t(y)) < \varepsilon/3$$

for all $t > 0$. Suppose $d(x, y) < \delta$. Since $e_y \in A(y)$, there exists a sequence $\{n_i\}_{i=1}^{\infty}$ such that $\lim_{i \to +\infty} f^{n_i}(x) = e_x$ and $\lim_{i \to +\infty} f^{n_i}(y) = e_y$. Then

$$d(r(x), r(y)) = d(e_x, e_y) \leq d(e_x, f^{n_i}(x)) + d(f^{n_i}(x), f^{n_i}(y)) + d(f^{n_i}(y), e_y)$$

and by choosing i sufficiently large, we have that $d(r(x), r(y)) < \varepsilon$. Hence r is continuous at x.

3. Irregular sets. Now let M be an open connected manifold, $Y \subseteq M$ a compact set which does not separate M and let h be a homeomorphism of M onto itself such that h is positively regular at each point and $\text{Irr}(h) = Y$. Assume that the metric of M is induced from the metric of the one point compactification of M. From the techniques of Proposition 2.1 of [2], Y is connected.

Lemma 3. If $A \subseteq M$ is a compact set and U is a neighborhood of Y, then there is an integer N such that $h^n(A) \subseteq U$ for all $n > N$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. This was shown in Corollary 2.2 of [2] with the additional hypothesis that the extension, \(h_\infty \), of \(h \) to the one point compactification, \(M_\infty = M \cup \{ \infty \} \), of \(M \) is not regular at \(\infty \). However, if \(h_\infty \) were regular at \(\infty \), then \(h_\infty \) would be positively regular on the compactum \(M_\infty \). But then \(h_\infty \) would be regular on all \(M_\infty \) and \(\text{Irr}(h) = \emptyset \) [5].

Lemma 4. \(Y = \bigcup_{x \in M} K(x) \).

Proof. Let \(Z = \bigcup_{x \in M} K(x) \). It follows from Lemma 3 that \(Z \subseteq Y \) and \(Z \) is nonempty. We claim that \(Z \) is closed; suppose that \(p = \lim_{i \to +\infty} p_i \) where \(p_i \in K(x_i) \). Let \(W \) be a compact neighborhood of \(Y \). By Lemma 3, we may assume that \(x_i \in W \) for each \(i \), and thus we may assume that there is a point \(x \in W \) such that \(x = \lim_{i \to +\infty} x_i \). Let \(\varepsilon > 0 \) be given and let \(\delta > 0 \) be such that if \(d(y, x) < \delta \); then \(d(h^n(y), h^n(x)) < \varepsilon/3 \) for each \(n > 0 \). Choose \(N > 0 \) so that \(d(x_N, x) < \delta \) and \(d(p_N, p) < \varepsilon/3 \). Now there exists \(n > 0 \) such that \(d(h^n(x_N), p_N) < \varepsilon/3 \); thus \(d(h^n(y), p) \leq d(h^n(x), h^n(x_N)) + d(h^n(x_N), p_N) + d(p_N, p) < \varepsilon \). It follows that \(p \in K(x) \); thus \(Z \) is closed.

For each open set \(U \) containing \(Z \) and any compact set \(A \subseteq M \), we claim that \(h^n(A) \subseteq U \) for all but finitely many positive integers \(n \). Clearly this is true if \(A \) is a point; the general statement follows from positive regularity and standard compactness arguments.

Suppose \(q \in Y - Z \); let \(W \) be a compact connected neighborhood of \(Y \) and let \(U \) be an open neighborhood of \(Z \) such that \(q \notin U \). For some \(n > 0 \), \(h^n(W) \subseteq U \) and since \(Y \) is connected, \(h^n(\text{frontier } W) \cap Y = \emptyset \). Since \(M - Y \) and \(Y \) are invariant under \(h \), this is a contradiction. Thus \(Y = Z \).

Theorem 5. \(Y \) is a strong deformation retract of \(M \).

Proof. By Lemma 4 and Theorem 2, \(Y \) is a retract of \(M \); therefore \(Y \) is an ANR. To prove the theorem it suffices to show that \(j_* : \pi_n(Y) \to \pi_n(M) \) is an isomorphism for each \(n \), where \(j : Y \to M \) is the inclusion map [4, p. 218]. Since \(Y \) is a retract of \(M \), \(j_* \) is one-to-one and since \(Y \) is an ANR, there is a neighborhood \(U \) of \(Y \) and a retraction \(\rho : U \to Y \) such that the diagram

\[
\begin{array}{ccc}
U & \xrightarrow{k} & M \\
\downarrow{\rho} & & \\
Y & \xrightarrow{i} & Y
\end{array}
\]

is homotopy commutative (rel \(Y \)) in \(M \), where all maps other than \(\rho \) are inclusions. Let \(y \in Y \), let \(\alpha \in \pi_n(M, y) \) and let \(f : (S^n, *) \to (M, y) \) be a map which represents \(\alpha \). For some \(m > 0 \), \(h^m(f(S^n)) \subseteq U \); let \(\beta \) denote the class of
Remark. Note that Theorem 5 is true in the case that M is a finite dimensional ANR.

Corollary 6. Let M be a connected open manifold and let h be a homeomorphism of M onto itself such that h is positively regular at each point. If $\text{Irr}(h)$ is a continuum in M and if for some $x \in M$, $\lim_{t \to +\infty} \sup \ell(t) = \text{Irr}(h)$, then $\text{Irr}(h)$ is the product of 1-spheres.

Proof. It is easily seen that $K(x) = \text{Irr}(h)$ and hence by Theorem 1, $\text{Irr}(h)$ is a commutative topological group. By either Theorem 2 or 5, $\text{Irr}(h)$ is locally connected and the result follows from [8, p. 262].

Remark. In [2], we gave an example which can be slightly modified to an example for which M is the product of the 1-sphere and 3-dimensional Euclidean space, $\text{Irr}(h)$ is a wildly embedded one sphere in M and for each $x \in M$, $\lim_{t \to +\infty} \sup \ell(t) = \text{Irr}(h)$. If $r : M \to \text{Irr}(h)$ is the retraction defined in §2, then for each $x \in \text{Irr}(h)$, $r^{-1}(x)$ is a generalized cohomology 3-manifold which is not a 3-manifold.

Conjecture. If M and h are as in Corollary 6 and if $r : M \to \text{Irr}(h)$ is the retraction defined in §2, then, for each $x \in \text{Irr}(h)$, $r^{-1}(x)$ is a generalized cohomology manifold.

A positive answer to the conjecture would provide valuable information about the topological conjugacy class of h.

References

5. L. S. Husch, Equicontinuous commutative semigroups of onto functions (submitted).

Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma

Department of Mathematics, University of Tennessee, Knoxville, Tennessee