## On convex power series of a conservative Markov operator

HTML articles powered by AMS MathViewer

- by S. R. Foguel and B. Weiss
- Proc. Amer. Math. Soc.
**38**(1973), 325-330 - DOI: https://doi.org/10.1090/S0002-9939-1973-0313476-9
- PDF | Request permission

## Abstract:

A. Brunel proved that a conservative Markov operator, $P$, has a finite invariant measure if and only if every operator $Q = \Sigma _{n = 0}^\infty {\alpha _n}{P^n}$ where ${\alpha _n} \geqq 0$ and $\Sigma {\alpha _n} = 1$ is conservative. In this note we give*a*different proof and study related problems.

## References

- A. Brunel,
*New conditions for existence of invariant measures in ergodic theory.*, Contributions to Ergodic Theory and Probability (Proc. Conf., Ohio State Univ., Columbus, Ohio, 1970) Springer, Berlin, 1970, pp. 7–17. MR**0268355** - William Feller,
*An introduction to probability theory and its applications. Vol. I*, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1957. 2nd ed. MR**0088081** - Shaul R. Foguel,
*The ergodic theory of Markov processes*, Van Nostrand Mathematical Studies, No. 21, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR**0261686** - S. R. Foguel,
*Remarks on conservative Markov processes*, Israel J. Math.**6**(1968), 381–383 (1969). MR**243618**, DOI 10.1007/BF02771218 - Th. Kaluza,
*Über die Koeffizienten reziproker Potenzreihen*, Math. Z.**28**(1928), no. 1, 161–170 (German). MR**1544949**, DOI 10.1007/BF01181155 - David G. Kendall,
*Renewal sequences and their arithmetic*, Symposium on Probability Methods in Analysis (Loutraki, 1966) Springer, Berlin, 1967, pp. 147–175. MR**0224175** - Shu-teh C. Moy,
*Period of an irreducible positive operator*, Illinois J. Math.**11**(1967), 24–39. MR**211470** - Donald Ornstein and Louis Sucheston,
*An operator theorem on $L_{1}$ convergence to zero with applications to Markov kernels*, Ann. Math. Statist.**41**(1970), 1631–1639. MR**272057**, DOI 10.1214/aoms/1177696806 - Frank Spitzer,
*Principles of random walk*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1964. MR**0171290**

## Bibliographic Information

- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**38**(1973), 325-330 - MSC: Primary 28A65
- DOI: https://doi.org/10.1090/S0002-9939-1973-0313476-9
- MathSciNet review: 0313476