Semigroups with invariant Radon measures
HTML articles powered by AMS MathViewer
- by Chandra Gowrisankaran
- Proc. Amer. Math. Soc. 38 (1973), 400-404
- DOI: https://doi.org/10.1090/S0002-9939-1973-0313480-0
- PDF | Request permission
Abstract:
Let $S$ be a commutative semigroup which is a topological space such that the translations are both continuous and open maps. The main result states that if (1) either $S$ is Suslin such that there is at least one point of continuity for the semigroup mapping $S \times S \to S$ or $S$ is polish and (2) $\exists$ a nontrivial Radon measure on $S$ such that $\mu (V) = \mu (x + V)$ for $V$ open $\subset S$ and $x \in S$, then $S$ can be embedded as an open subsemigroup of a locally compact group. It is also shown that if $S$ is polish and a cancellation semigroup then $S$ can be embedded as an open subsemigroup of a group.References
- Robert Ellis, A note on the continuity of the inverse, Proc. Amer. Math. Soc. 8 (1957), 372–373. MR 83681, DOI 10.1090/S0002-9939-1957-0083681-9
- B. Gelbaum, G. K. Kalisch, and J. M. H. Olmsted, On the embedding of topological semigroups and integral domains, Proc. Amer. Math. Soc. 2 (1951), 807–821. MR 43109, DOI 10.1090/S0002-9939-1951-0043109-6
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- Chandra Gowrisankaran, Radon measures on groups, Proc. Amer. Math. Soc. 25 (1970), 381–384. MR 255724, DOI 10.1090/S0002-9939-1970-0255724-7
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- Deane Montgomery, Continuity in topological groups, Bull. Amer. Math. Soc. 42 (1936), no. 12, 879–882. MR 1563458, DOI 10.1090/S0002-9904-1936-06456-6
- Roger Rigelhof, Invariant measures on locally compact semigroups, Proc. Amer. Math. Soc. 28 (1971), 173–176. MR 277691, DOI 10.1090/S0002-9939-1971-0277691-3
- Neal J. Rothman, Embedding of topological semigroups, Math. Ann. 139 (1960), 197–203 (1960). MR 116076, DOI 10.1007/BF01352911
- Laurent Schwartz, Radon measures on arbitrary topological spaces and cylindrical measures, Tata Institute of Fundamental Research Studies in Mathematics, No. 6, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, London, 1973. MR 0426084
- Ta-Sun Wu, Continuity in topological groups, Proc. Amer. Math. Soc. 13 (1962), 452–453. MR 137785, DOI 10.1090/S0002-9939-1962-0137785-4
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 38 (1973), 400-404
- MSC: Primary 28A70; Secondary 22A15, 43A05
- DOI: https://doi.org/10.1090/S0002-9939-1973-0313480-0
- MathSciNet review: 0313480