Perfect maps of symmetrizable spaces
HTML articles powered by AMS MathViewer
- by Harold W. Martin
- Proc. Amer. Math. Soc. 38 (1973), 410-412
- DOI: https://doi.org/10.1090/S0002-9939-1973-0314009-3
- PDF | Request permission
Abstract:
It is shown that if $f:X \to Y$ is a perfect map from a symmetrizable space $X$ onto a space $Y$, then $Y$ is metrizable if and only if $f$ is a coherent map. This fact, together with certain known results, yields the following: Let $f:X \to Y$ be a perfect map from a Hausdorff symmetrizable space $X$ onto a space $Y$; the following are equivalent: (1) $X$ is metrizable; (2) $f$ is a regular map; (3) $f$ is a coherent map; (4) $Y$ is metrizable.References
- A. V. Arhangel′skiĭ, Mappings and spaces, Russian Math. Surveys 21 (1966), no. 4, 115–162. MR 0227950, DOI 10.1070/RM1966v021n04ABEH004169
- Carlos J. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1–16. MR 188982
- Harold W. Martin, Metrization of symmetric spaces and regular maps, Proc. Amer. Math. Soc. 35 (1972), 269–274. MR 303511, DOI 10.1090/S0002-9939-1972-0303511-5
- Kiiti Morita and Sitiro Hanai, Closed mappings and metric spaces, Proc. Japan Acad. 32 (1956), 10–14. MR 87077
- V. W. Niemytzki, On the “third axiom of metric space”, Trans. Amer. Math. Soc. 29 (1927), no. 3, 507–513. MR 1501402, DOI 10.1090/S0002-9947-1927-1501402-2
- Akihiro Okuyama, On metrizability of $M$-spaces, Proc. Japan Acad. 40 (1964), 176–179. MR 167957
- A. H. Stone, Metrizability of decomposition spaces, Proc. Amer. Math. Soc. 7 (1956), 690–700. MR 87078, DOI 10.1090/S0002-9939-1956-0087078-6
- Wallace Alvin Wilson, On Semi-Metric Spaces, Amer. J. Math. 53 (1931), no. 2, 361–373. MR 1506824, DOI 10.2307/2370790
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 38 (1973), 410-412
- MSC: Primary 54E35
- DOI: https://doi.org/10.1090/S0002-9939-1973-0314009-3
- MathSciNet review: 0314009