The Sorgenfrey line is not an elastic space
HTML articles powered by AMS MathViewer
- by Gary Gruenhage
- Proc. Amer. Math. Soc. 38 (1973), 665-666
- DOI: https://doi.org/10.1090/S0002-9939-1973-0317286-8
- PDF | Request permission
Abstract:
In this paper we show that the Sorgenfrey line is an example of a paracompact monotonically normal space which is not elastic. We also give a class of examples of elastic spaces which are not linearly stratifiable.References
- C. R. Borges, Four generalizations of stratifiable spaces, General topology and its relations to modern analysis and algebra, III (Proc. Third Prague Topological Sympos., 1971) Academia, Prague, 1972, pp. 73–76. MR 0362245
- R. W. Heath, D. J. Lutzer, and P. L. Zenor, Monotonically normal spaces, Trans. Amer. Math. Soc. 178 (1973), 481–493. MR 372826, DOI 10.1090/S0002-9947-1973-0372826-2
- Hisahiro Tamano and J. E. Vaughan, Paracompactness and elastic spaces, Proc. Amer. Math. Soc. 28 (1971), 299–303. MR 273568, DOI 10.1090/S0002-9939-1971-0273568-8
- J. E. Vaughan, Linearly stratifiable spaces, Pacific J. Math. 43 (1972), 253–266. MR 321021
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 38 (1973), 665-666
- MSC: Primary 54E20; Secondary 54G20
- DOI: https://doi.org/10.1090/S0002-9939-1973-0317286-8
- MathSciNet review: 0317286