On a nonlinear stochastic integral equation of the Hammerstein type
HTML articles powered by AMS MathViewer
- by W. J. Padgett
- Proc. Amer. Math. Soc. 38 (1973), 625-631
- DOI: https://doi.org/10.1090/S0002-9939-1973-0320663-2
- PDF | Request permission
Abstract:
A nonlinear stochastic integral equation of the Hammerstein type in the form \[ x(t;\omega ) = h(t;\omega ) + \int _s {k(t,s;\omega )f(s,x(s;\omega )} )d\mu (s)\] is studied where $t \in S,a$, a $\sigma$-finite measure space with certain properties, $\omega \in \Omega$, the supporting set of a probability measure space $(\Omega ,A,P)$, and the integral is a Bochner integral. A random solution of the equation is defined to be a second order vector-valued stochastic process $x(t;\omega )$ on $S$ which satisfies the equation almost certainly. Using certain spaces of functions, which are spaces of second order vector-valued stochastic processes on $S$, and fixed point theory, several theorems are proved which give conditions such that a unique random solution exists.References
- M. W. Anderson, Stochastic integral equations, Ph.D. Dissertation, University of Tennessee, Nashville, Tenn., 1966.
- Richard F. Arens, A topology for spaces of transformations, Ann. of Math. (2) 47 (1946), 480–495. MR 17525, DOI 10.2307/1969087
- A. T. Bharucha-Reid, On the theory of random equations, Proc. Sympos. Appl. Math., Vol. XVI, Amer. Math. Soc., Providence, R.I., 1964, pp. 40–69. MR 0189071
- D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458–464. MR 239559, DOI 10.1090/S0002-9939-1969-0239559-9
- Felix E. Browder and Chaitan P. Gupta, Monotone operators and nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc. 75 (1969), 1347–1353. MR 250141, DOI 10.1090/S0002-9904-1969-12420-1
- Felix E. Browder, Djairo G. de Figueiredo, and Chaitan P. Gupta, Maximal monotone operators and nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc. 76 (1970), 700–705. MR 273469, DOI 10.1090/S0002-9904-1970-12511-3
- C. Corduneanu, Problèmes globaux dans la théorie des équations intégrales de Volterra, Ann. Mat. Pura Appl. (4) 67 (1965), 349–363 (French). MR 182849, DOI 10.1007/BF02410815
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- W. J. Padgett and Chris P. Tsokos, A random Fredholm integral equation, Proc. Amer. Math. Soc. 33 (1972), 534–542. MR 292197, DOI 10.1090/S0002-9939-1972-0292197-4
- W. V. Petryshyn and P. M. Fitzpatrick, New existence theorems for nonlinear equations of Hammerstein type, Trans. Amer. Math. Soc. 160 (1971), 39–63. MR 281065, DOI 10.1090/S0002-9947-1971-0281065-3
- Chris P. Tsokos, On a stochastic integral equation of the Volterra type, Math. Systems Theory 3 (1969), 222–231. MR 247686, DOI 10.1007/BF01703921
- Kôsaku Yosida, Functional analysis, Die Grundlehren der mathematischen Wissenschaften, Band 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965. MR 0180824
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 38 (1973), 625-631
- MSC: Primary 45G99
- DOI: https://doi.org/10.1090/S0002-9939-1973-0320663-2
- MathSciNet review: 0320663