A note on paths through $0$
HTML articles powered by AMS MathViewer
- by Rohit Parikh
- Proc. Amer. Math. Soc. 39 (1973), 178-180
- DOI: https://doi.org/10.1090/S0002-9939-1973-0311468-7
- PDF | Request permission
Abstract:
We show that a hyperarithmetic set can be truth table reduced to a $\Pi _1^1$-path through $O$ iff it is truth table reducible to some r.e. set.References
- S. Feferman and C. Spector, Incompleteness along paths in progressions of theories, J. Symbolic Logic 27 (1962), 383โ390. MR 172793, DOI 10.2307/2964544
- G. Kreisel, Which number theoretic problems can be solved in recursive progressions on $\Pi ^{1}_{1}$-paths through $O$?, J. Symbolic Logic 37 (1972), 311โ334. MR 369037, DOI 10.2307/2272975
- G. Kreisel, J. Shoenfield, and Hao Wang, Number theoretic concepts and recursive well-orderings, Arch. Math. Logik Grundlag. 5 (1960), 42โ64. MR 115911, DOI 10.1007/BF01977642
- Hartley Rogers Jr., Theory of recursive functions and effective computability, McGraw-Hill Book Co., New York-Toronto-London, 1967. MR 0224462
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 39 (1973), 178-180
- MSC: Primary 02F35
- DOI: https://doi.org/10.1090/S0002-9939-1973-0311468-7
- MathSciNet review: 0311468