A multiple exchange property for bases
HTML articles powered by AMS MathViewer
- by Curtis Greene
- Proc. Amer. Math. Soc. 39 (1973), 45-50
- DOI: https://doi.org/10.1090/S0002-9939-1973-0311494-8
- PDF | Request permission
Abstract:
Let $X$ and $Y$ be bases of a combinatorial geometry $G$, and let $A$ be any subset of $X$. Then there exists a subset $B$ of $Y$ with the property that $(X - A) \cup B$ and $(Y - B) \cup A$ are both bases of $G$.References
- Henry H. Crapo and Gian-Carlo Rota, On the foundations of combinatorial theory. II. Combinatorial geometries, Studies in Appl. Math. 49 (1970), 109–133. MR 286673, DOI 10.1002/sapm1970492109 C. Greene, Lectures on combinatorial geometries, Bowdoin College, Brunswick, Me., 1971 (mimeographed notes). C. Greene, G.-C. Rota and N. White, Coordinates and combinatorial geometries (to appear).
- Gian-Carlo Rota, Combinatorial theory, old and new, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 229–233. MR 0505646 —, Combinatorial theory, Bowdoin College, Brunswick, Me., 1971. (mimeographed notes).
- Neil White (ed.), Combinatorial geometries, Encyclopedia of Mathematics and its Applications, vol. 29, Cambridge University Press, Cambridge, 1987. MR 921064, DOI 10.1017/CBO9781107325715 W. Whitely, Logic and invariant theory, Thesis, M.I.T., Cambridge, Mass., 1971.
- Hassler Whitney, On the Abstract Properties of Linear Dependence, Amer. J. Math. 57 (1935), no. 3, 509–533. MR 1507091, DOI 10.2307/2371182
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 39 (1973), 45-50
- MSC: Primary 05B35
- DOI: https://doi.org/10.1090/S0002-9939-1973-0311494-8
- MathSciNet review: 0311494