THE NUMBER OF FIELD TOPOLOGIES ON COUNTABLE FIELDS

KLAUS-PETER PODEWSKI

Abstract. J. O. Kiltinen proves that every infinite field admits a nondiscrete, Hausdorff field topology. In this note it is shown that every countable field K admits 2^{2^ω} many field topologies, which even fail to be the join of locally bounded ring topologies.

1. Introduction. In §2 we give a method for generating a fundamental system $\{V_n|n \in \omega\}$ of neighborhoods of zero for a field topology on K. To do this, we first define the notion of a condition. This is a function from $\omega \times \{0, 1\}$ into the set of finite subsets of K with some further properties. A condition p decides for a finite number of elements of K if they are elements of V_n or not by saying r is an element of V_n if $r \in p(n, 0)$ and r is not an element of V_n if $r \not\in p(n, 1)$. Given two conditions p and p', then p' extends p if $p(n, i) \subseteq p'(n, i)$ for every (n, i). If G is a chain of conditions, then by the above decision process we get a fundamental system of a field topology.

Since a condition decides only for a finite number of elements of K if they are elements of V_n or not, we can prove in §3 that there are “many” possibilities to extend a condition. In §4 we define what it means for a set of chains of conditions to be entwined. If \mathcal{G}_1 and \mathcal{G}_2 are different nonempty subsets of an entwined set then the join-topologies $\bigvee \{\mathcal{F}_G|G \in \mathcal{G}_1\}$ and $\bigvee \{\mathcal{F}_G|G \in \mathcal{G}_2\}$ are also different. Using the results of §3 we can construct an entwined set of power 2^{2^ω} of chains of conditions in such a way that for every subset \mathcal{G}_3, the topology $\bigvee \{\mathcal{F}_G|G \in \mathcal{G}_3\}$ is not the join of locally bounded ring topologies.

2. Chains of conditions. Let $(K, +, \cdot, 0, 1)$ be a countable field and let ϕ_K denote the set of functions $\varphi_d, \varphi_c, \varphi_b$ and $\varphi_a, a \in K$, defined by $\varphi_d(X) = X/(1-X), \varphi_c(X) = X \cdot X, \varphi_b(X) = X - X$ and $\varphi_a(X) = a \cdot X$, for every subset X of K with $1 \notin X$. Since K is countable there is a sequence $(\varphi_n)_{n \in \omega}$ of elements of ϕ_K such that the set $\{n|\varphi = \varphi_n\}$ is infinite for every $\varphi \in \phi_K$. A sequence $(V_n|n \in \omega)$ of subsets of K is called a fundamental system, if $1 \notin V_n, V_{n+1} \subseteq V_n, \varphi_n(V_{n+1}) \subseteq V_n$. For every field topology there is a basic...
system of neighborhoods of zero which is a fundamental system, and every fundamental system determines a field topology.

1. Definition. A function p from $\omega \times \{0, 1\}$ into the set of all finite subsets of K is called a condition, if the following properties hold:

 (a) $0 \in p(n, 0)$ and $1 \in p(n, 1)$,
 (b) $p(n, 0) \cap p(n, 1) = \emptyset$,
 (c) $p(n+1, i) \subseteq p(n, i)$,
 (d) $\varphi_n(p(n+1, 0)) \subseteq p(n, 0)$.

Let P be the set of all conditions. P is not empty, since p^0 defined by $p(n, i) = \{i\}$ for every $n \in \omega$, is an element of P. If p and p' are two conditions, we say that p' extends p (written $p \leq p'$), if $p(n, i)$ is a subset of $p'(n, i)$ for every $(n, i) \in \omega \times \{0, 1\}$. \leq is a partial ordering of P. If G is a chain of conditions, then V^G_n is defined to be $\bigcup \{p(n, 0) \mid p \in G\}$.

2. Theorem. Let G be a chain of conditions, then $\{V^G_n \mid n \in \omega\}$ is a fundamental system.

 The proof is straightforward if we use the fact that
 $$\varphi_n(\bigcup \{p(n + 1, 0) \mid p \in G\}) = \bigcup \{\varphi_n(p(n + 1, 0)) \mid p \in G\}.$$

 For every chain of conditions let T_G denote the field topology which is determined by $\{V^G_n \mid n \in \omega\}$.

3. Theorem. If T is a field topology with a countable basis, then there is a chain G of conditions such that $T = T_G$.

 Proof. Let $\{V^G_n \mid n \in \omega\}$ be a fundamental system which determines the topology T and let $(r^n_k)_{k \in \omega}$ be a well ordering of V^G_n for each $n \in \omega$. By recursion we define for every m a condition p_m as follows:

 $$p_m(n, i) = p_m(n + 1, i) \cup \varphi_n(p_m(n + 1, i)) \cup \{r^n_j \mid 0 \leq j \leq m - n\}$$
 if $n \leq m$ and $i = 0$,

 $$= \{i\} \text{ otherwise.}$$

 Let G be the set $\{p_m \mid m \in \omega\}$. Then we have for every n that $V^G_n = V^G_n$ and therefore is $T_G = T$. □

3. Extensions of conditions. Here we prove that for every condition p, for each $(n, i) \in \omega \times \{0, 1\}$ and for nearly all (this means that for all but finitely many) $r \in K$ there exists a condition $p_r \geq p$ such that $r \in p_r(n, i)$. This will enable us to prove in §3 that there are "many" different chains of conditions. First the easy case.

4. Theorem. Let p be a condition and $n \in \omega$. Then for nearly all $r \in K$ there is a condition p_r such that $p_r \geq p$ and $r \in p_r(n, 1)$.
Proof. Let \(r \in K, r \notin p(0, 0) \). If we define \(p_r \) as follows:

\[
p_r(n, i) = p(n, i) \cup \{r\} \quad \text{if } i = 1,
= p(n, i) \quad \text{otherwise},
\]

then \(p_r \) has the desired properties. Since \(p(0, 0) \) is finite, this holds for nearly all \(r \). \(\square \)

Now the other case. Let \(R(K) \) be the set of all rational functions over \(K \). If \(H \) is a subset of \(R(K) \) and if for each \(f \in H, r \in K \) is in the domain of \(f \), then \(H(r) \) shall denote the set of all \(f(r) \), with \(f \in H \). Let \(f \in R(K) \) and \(a \in K \) such that \(f(0) \neq a \). Then for nearly all \(r \in K, f(r) \neq a \). So we obtain:

5. Lemma. Let \(H \subseteq R(K) \) and \(M \subseteq K \) be finite. If \(H(0) \cap M = \emptyset \), then for nearly all \(r \in K, H(r) \cap M = \emptyset \).

6. Lemma. Let \(\varphi \in \phi_K \) and let \(H \) be a finite subset of \(R(K) \) with \(1 \notin H(0) \), then there is a finite \(H' \subseteq R(K) \) such that, for nearly all \(r \in K, \varphi(H(r)) = H'(r) \).

Proof. If \(\varphi = \varphi_d \) we define \(H' \) to be \(\{fg(1-g) | f, g \in H \} \). Since \(1 \notin H(0) \) we have for nearly all \(r \in K, 1 \notin H(r) \). Let \(r \) be such an element of \(K \). Then \(\varphi_d(H(r)) = H(r)/(1-H(r)) = H'(r) \). Thus, for nearly all \(r \in K, \varphi_d(H(r)) = H'(r) \). The proof is similar if \(\varphi = \varphi_c, \varphi_b \) or \(\varphi_a \). \(\square \)

Now let \(p \in P \) and let \(H \) be a finite subset of \(R(K) \). By induction over \(n \) we can prove

7. Theorem. If \(H(0) \) is a subset of \(p(n, 0) \), then for nearly all \(r \in K \) there is a condition \(p_r \geq p \) such that:

1. \(H(r) \subseteq p_r(n, 0) \),
2. \(p_r(m, i) = p(m, i) \) if \(m > n \) or \(i = 1 \).

(i) The Theorem holds for \(n = 0 \).

Proof. Since \(H(0) \) is a subset of \(p(n, 0) \), \(H(0) \cap p(0, 1) = \emptyset \). By Lemma 5, we have for nearly all \(r \in K \) that \(p(0, 1) \cap H(r) = \emptyset \). Let \(r \) be such an element. If \(p_r \) is defined by

\[
p_r(m, i) = p(m, i) \cup H(r) \quad \text{if } m = 0 \text{ and } i = 0,
= p(m, i) \quad \text{otherwise},
\]

then \(p_r \) has the desired properties.

(ii) Assume the Theorem holds for \(n \), then it holds for \(n + 1 \).

Proof. First we choose a finite subset \(H'' \) of \(R(K) \), with \(H''(0) \subseteq p(n, 0) \) as follows: Let \(H' = H \cup \{f_a | a \in p(n+1, 0)\} \), where \(f_a \) is the function defined by \(f_a(r) = a \) for every \(r \in K \). Since \(1 \notin p(n+1, 0) \) and \(H'(0) \subseteq p(n+1, 0) \), we have by Lemma 6 that there is a finite \(H'' \subseteq R(K) \) such that
for nearly all \(r \in K \), \(H''(r) = q_n(H'(r)) \). Let \(L \) be the set of these \(r \)'s. If we define \(H''' = H' \cup H'' \), then we have that \(H'''(0) \subseteq p(n, 0) \). By assumption there are for nearly all \(r \in K \) conditions \(p'_r \supseteq p \) such that:

1. \(H'''(r) \subseteq p'_r(n, 0) \),
2. \(p(m, i) = p'_r(m, i) \) if \(m > n \) or \(i = 1 \).

Let \(L' \) be the set of these \(r \)'s and let \(r \in L \cap L' \). Then we define \(p_r \) by

\[
p_r(m, i) = p'_r(m, i) \cup H(r) \quad \text{if } m = n + 1 \text{ and } i = 0,
\]

\[
= p'_r(m, i) \quad \text{otherwise}.
\]

\(p_r \) has the desired properties. Since nearly all \(r \in K \) are in \(L \cap L' \), the theorem holds for \(n + 1 \).

8. Corollary. Let \(p \) be a condition and \(n \in \omega \). Then for nearly all \(r \in K \) there are conditions \(p_r \supseteq p \), such that \(r \in p_r(n, 0) \).

Proof. Take \(H \) to be \(\{\text{id}\} \), where \(\text{id} \) is the function which maps every element of \(K \) onto itself. By Theorem 7 we get the desired result. \(\square \)

4. Entwined sets of chains of conditions. To prove that there are \(2^{2^\aleph_0} \) many field topologies on \(K \), it suffices to show that there is a set \(\mathcal{G} \) of power \(2^{\aleph_0} \) of chains of conditions such that for any two different non-empty subsets \(\mathcal{G}_1 \) and \(\mathcal{G}_2 \) of \(\mathcal{G} \) the join-topologies \(\bigvee \{\mathcal{F}_G|G \in \mathcal{G}_1\} \) and \(\bigvee \{\mathcal{F}_G|G \in \mathcal{G}_2\} \) are also different.

9. Definition. Let \(\mathcal{G} \) be a set of chains of conditions. \(\mathcal{G} \) is called entwined if, for every \(n \in \omega \) and for every finite subset \(\{G_i|0 \leq i \leq m\} \) of \(\mathcal{G} \), there are conditions \(p_i \in G_i \), \(0 \leq i \leq m \), such that

\[
\bigcap \{p_i(n, 0) \mid 1 \leq i \leq m\} \cap p_0(0, 1) \quad \text{is not empty}.
\]

An easy consequence of Definition 9 is that there is a sequence which converges to zero in all of the topologies \(\mathcal{T}_{a_1}, \ldots, \mathcal{T}_{a_m} \) but which is bounded away from zero in \(\mathcal{T}_{a_0} \).

10. Theorem. If \(\mathcal{G} \) is entwined, then \(\bigvee \{\mathcal{F}_G|G \in \mathcal{G}\}\{G_0\} \) is not finer than \(\mathcal{T}_{a_0} \) for every \(G_0 \in \mathcal{G} \).

Proof. Suppose \(\bigvee \{\mathcal{F}_G|G \in \mathcal{G}\}\{G_0\} \) is finer than \(\mathcal{T}_{a_0} \) for some \(G_0 \in \mathcal{G} \). Then there are \(G_1, \ldots, G_m \in \mathcal{G} \) and \(k_1, \ldots, k_m \in \omega \) such that

\[
\bigcap \{V_{G_i}^a \mid 1 \leq i \leq m\} \subset V_{G_0}^a.
\]

Let \(k_0 = \max\{k_i|1 \leq i \leq m\} \). Since \(\mathcal{G} \) is entwined, there are conditions \(p_i \in G_i \), \(0 \leq i \leq m \), such that \(M = \bigcap \{p_i(k_0, 0) \mid 1 \leq i \leq m\} \cap p_0(0, 1) \) is not empty. If \(r \in M \), then \(r \in V_{k_0}^{G_i} \subset V_{k_1}^{G_i} \) and \(r \in V_{k_0}^{G_0} \). This is a contradiction. \(\square \)
11. Corollary. Let \mathcal{G} be entwined and $\mathcal{G}_1, \mathcal{G}_2$ nonempty different subsets of \mathcal{G}. Then $\bigvee \{\mathcal{T}_G|G \in \mathcal{G}_1\}$ and $\bigvee \{\mathcal{T}_G|G \in \mathcal{G}_2\}$ are different.

Proof. Let $\mathcal{G}_1, \mathcal{G}_2 \subset \mathcal{G}$ such that $\mathcal{G}_1 \neq \mathcal{G}_2$. We may suppose that there is a $G_0 \in \mathcal{G}_1$ with $G_0 \notin \mathcal{G}_2$. Because \mathcal{G} is entwined $\bigvee \{\mathcal{T}_G|G \in \mathcal{G}\}$ is not finer than \mathcal{T}_{G_0}. $\bigvee \{\mathcal{T}_G|G \in \mathcal{G}\}$ is finer than $\bigvee \{\mathcal{T}_G|G \in \mathcal{G}_2\}$ and $\bigvee \{\mathcal{T}_G|G \in \mathcal{G}_1\}$ is finer than \mathcal{T}_{G_0}. Thus, $\bigvee \{\mathcal{T}_G|G \in \mathcal{G}_1\}$ is not finer than $\bigvee \{\mathcal{T}_G|G \in \mathcal{G}_2\}$. □

Now we want to show that there is an entwined \mathcal{G} of power 2^{\aleph_0}. We identify each natural number with the set of its predecessors. n^2 denotes the set of functions from n into 2 and ω_2 the set of those from ω into 2. If f is such a function, then $f|n$ is the restriction of f to n. By induction over n, we shall choose, for each $f \in n^{n+2}$, a condition p_f such that:

1. $p_f|n \leq p_f$.
2. $p_f'(0, 1) \cap \{\{p^g(n, 0)|g \in n^{n+2} \text{ and } g \neq f\}$ is not empty.
3. There is an $r \in n \cap \{\{p^g(n, 0)|g \in n^{n+2}\}$ and an $m \in \omega$, $m \neq 0$, such that $r^m \in n \cap \{p^g(0, 1)|g \in n^{n+2}\}$.

Let $p^f = p^0$. Assume that, for $f \in n^2$, p_f' is chosen. Let $(f_k)_{k \in n^m}$ be a well ordering of n^{n+2}. For each $f \in n^{n+2}$ we choose, by induction over $k \in m_n+1$ conditions, p'_k as follows: By Corollary 8 there are conditions p'_k such that $p'_k \geq p^f|n$ and $M = \bigcap \{p'_k(n, 0)|f \in n^{n+2}\} \setminus \{0\} \neq \emptyset$. Let $r \in M$ be given. If there is an $m \in \omega$ such that $r^m = 1$, then take p'_k to be p_k'. If there is no $m \in \omega$ such that $r^m = 1$, then $\{r^m|m \in \omega\}$ is infinite. Hence, by Theorem 4 there are conditions $p'_0 \geq p'_k$ and an $m \in \omega$ such that $r^m \in n \cap \{p^g(0, 1)|f \in n^{n+2}\}$.

Suppose p'_k is already chosen. Then by Theorem 4 and Corollary 8 there are conditions p'_{k+1} such that $p'_{k+1} \geq p'_k$ and $p'_{k+1}(0, 1) \cap \{p'_{k+1}(n, 0)|f \in n^{n+2} \text{ and } f \neq f'_k\}$ is nonempty. Let $p'_k = p'^{n+2}_m$. Then the conditions p'_f, $f \in n^{n+2}$, have the desired properties. Now for $g \in \omega^2$, define G_g to be the chain $\{p'^{|n}n|n \in \omega\}$, and define \mathcal{G} to be $\{G_g|g \in \omega^2\}$.

12. Theorem. \mathcal{G} is an entwined set of power 2^{\aleph_0} of chains of conditions.

Proof. It is sufficient to show that \mathcal{G} is entwined. Let $g_0 \in \omega_2$ and let $g_i \in \omega^2 \setminus \{g_0\}$, $1 \leq i \leq m$. Then for each n there is a $k>n$ such that $g_0|k \notin \{g_i|k \leq i \leq m\}$. By 2, we know that $p^{|k}_0(0, 1) \cap \{p^{|k}_0(k-1, 0)|1 \leq i \leq m\}$ is not empty. Since $k-1 \leq n$ we have that $p^{|k}_0(k-1, 0)$ is a subset of $p^{|k}_0(n, 0)$. This implies that $p^{|k}_0(0, 1) \cap \{p^{|k}_0(n, 0)|1 \leq i \leq m\}$ is not empty. Thus, \mathcal{G} is entwined. □

Now we shall prove that we have constructed \mathcal{G} in such a way that for each $\mathcal{G}_0 \subset \mathcal{G}$ the topology $\bigvee \{\mathcal{T}_G|G \in \mathcal{G}_0\}$ is not the join of locally bounded ring topologies. By [1] it is sufficient to show that there is a neighborhood V of zero such that for every neighborhood $U \subset V$ there is an $n \in \omega$ with $U^n \subset V$.
13. THEOREM. For every $\mathcal{G}' \subseteq \mathcal{G}$, $\bigvee \{ T_G | G \in \mathcal{G}' \}$ fails to be the join of locally bounded ring topologies.

PROOF. Let $G_0 \in \mathcal{G}'$ be given and let U be a neighborhood of zero, $U \subseteq V_{G_0}^{G_0}$. Then there are finitely many $G_i \in \mathcal{G}'$, $1 \leq i \leq m$, and a $k \in \omega$ such that $\bigcap \{ V_{G_i}^{G_i} | 1 \leq i \leq m \} \subseteq U$. By the definition of \mathcal{G} there are functions $f_i \in k^{+1.2}$, $0 \leq i \leq m$, such that $p^{f_i}(k, 0) \subseteq V_{G_i}^{G_i}$. From 3 it follows that there is an $r \in \bigcap \{ p^{f_i}(k, 0) | 1 \leq i \leq m \}$ and a $z \in \omega$, $z \neq 0$, such that $r^z \in p^{f_i}(0, 1)$. Hence, $U^z \subseteq V_{G_0}^{G_0}$ and therefore $\bigvee \{ T_G | G \in \mathcal{G}' \}$ is not the join of locally bounded ring topologies.

REFERENCES