THE NUMBER OF FIELD TOPOLOGIES
ON COUNTABLE FIELDS

KLAUS-PETER PODEWSKI

Abstract. J. O. Kiltinen proves that every infinite field admits a nondiscrete, Hausdorff field topology. In this note it is shown that every countable field K admits $2^{|\mathbb{N}|}$ many field topologies, which even fail to be the join of locally bounded ring topologies.

1. Introduction. In §2 we give a method for generating a fundamental system $\{V_n|n \in \omega\}$ of neighborhoods of zero for a field topology on K. To do this, we first define the notion of a condition. This is a function from $\omega \times \{0, 1\}$ into the set of finite subsets of K with some further properties. A condition p decides for a finite number of elements of K if they are elements of V_n or not by saying r is an element of V_n if $r \in p(n, 0)$ and r is not an element of V_n if $r \notin p(n, 1)$. Given two conditions p and p', then p' extends p if $p(n, i) \subseteq p'(n, i)$ for every (n, i). If G is a chain of conditions, then by the above decision process we get a fundamental system of a field topology.

Since a condition decides only for a finite number of elements of K if they are elements of V_n or not, we can prove in §3 that there are "many" possibilities to extend a condition. In §4 we define what it means for a set of chains of conditions to be entwined. If \mathcal{G}_1 and \mathcal{G}_2 are different non-empty subsets of an entwined set then the join-topologies $\bigvee \{V_g|G \in \mathcal{G}_1\}$ and $\bigvee \{V_g|G \in \mathcal{G}_2\}$ are also different. Using the results of §3 we can construct an entwined set of power $2^{|\mathbb{N}|}$ of chains of conditions in such a way that for every subset \mathcal{G}_1, the topology $\bigvee \{V_g|G \in \mathcal{G}_1\}$ is not the join of locally bounded ring topologies.

2. Chains of conditions. Let $(K, +, \cdot, 0, 1)$ be a countable field and let ϕ_K denote the set of functions φ_d, φ_c, φ_b, and φ_a, $a \in K$, defined by $\varphi_d(X) = X/(1-X)$, $\varphi_c(X) = X \cdot X$, $\varphi_b(X) = X - X$ and $\varphi_a(X) = a \cdot X$, for every subset X of K with $1 \notin X$. Since K is countable there is a sequence $(\varphi_n)_{n \in \omega}$ of elements of ϕ_K such that the set $\{n|\varphi = \varphi_n\}$ is infinite for every $\varphi \in \phi_K$. A sequence $\{V_n|n \in \omega\}$ of subsets of K is called a fundamental system, if $1 \notin V_n$, $V_{n+1} \subseteq V_n$, $\varphi_n(V_{n+1}) \subseteq V_n$. For every field topology there is a basic
system of neighborhoods of zero which is a fundamental system, and every
fundamental system determines a field topology.

1. Definition. A function \(p \) from \(\omega \times \{0, 1\} \) into the set of all finite
subsets of \(K \) is called a condition, if the following properties hold:
(a) \(0 \in p(n, 0) \) and \(1 \in p(n, 1) \),
(b) \(p(n, 0) \cap p(n, 1) = \emptyset \),
(c) \(p(n+1, i) \subseteq p(n, i) \),
(d) \(\varphi_n(p(n+1, 0)) \subseteq p(n, 0) \).

Let \(P \) be the set of all conditions. \(P \) is not empty, since \(p^0 \) defined by
\(p(n, i) = \{i\} \) for every \(n \in \omega \), is an element of \(P \). If \(p \) and \(p' \) are two condi-
tions we say that \(p' \) extends \(p \) (written \(p \leq p' \)), if \(p(n, i) \) is a subset of
\(p'(n, i) \) for every \((n, i) \in \omega \times \{0, 1\} \). \(\leq \) is a partial ordering of \(P \). If \(G \) is a
chain of conditions, then \(V_n^G \) is defined to be \(\bigcup \{ p(n, 0) \mid p \in G \} \).

2. Theorem. Let \(G \) be a chain of conditions, then \(\{ V_n^G \mid n \in \omega \} \) is a
fundamental system.

The proof is straightforward if we use the fact that
\[\varphi_n(\bigcup \{ p(n+1, 0) \mid p \in G \}) = \bigcup \{ \varphi_n(p(n+1, 0)) \mid p \in G \} \]

For every chain of conditions let \(T_G \) denote the field topology which is
determined by \(\{ V_n^G \mid n \in \omega \} \).

3. Theorem. If \(T \) is a field topology with a countable basis, then there
is a chain \(G \) of conditions such that \(T = T_G \).

Proof. Let \(\{ V_n \mid n \in \omega \} \) be a fundamental system which determines the
topology \(T \) and let \((r^n_k)_{k \in \omega} \) be a well ordering of \(V_n \) for each \(n \in \omega \). By
recursion we define for every \(m \) a condition \(p_m \) as follows:
\[p_m(n, i) = p_m(n+1, i) \cup \varphi_n(p_m(n+1, i)) \cup \{ r^n_j \mid 0 \leq j \leq m - n \} \]
if \(n \leq m \) and \(i = 0 \),
\[= \{i\} \text{ otherwise.} \]

Let \(G \) be the set \(\{ p_m \mid m \in \omega \} \). Then we have for every \(n \) that \(V_n^G = V_n \) and
therefore is \(T_G = T \). \(\square \)

3. Extensions of conditions. Here we prove that for every condition \(p \),
for each \((n, i) \in \omega \times \{0, 1\} \) and for nearly all (this means that for all but
finitely many) \(r \in K \) there exists a condition \(p_r \leq p \) such that \(r \in p_r(n, i) \).
This will enable us to prove in §3 that there are "many" different chains of
conditions. First the easy case.

4. Theorem. Let \(p \) be a condition and \(n \in \omega \). Then for nearly all
\(r \in K \) there is a condition \(p_r \) such that \(p_r \leq p \) and \(r \in p_r(n, 1) \).
Proof. Let \(r \in K, r \notin p(0, 0) \). If we define \(p_r \) as follows:

\[
p_r(n, i) = \begin{cases}
p(n, i) \cup \{r\} & \text{if } i = 1, \\
p(n, i) & \text{otherwise},
\end{cases}
\]

then \(p_r \) has the desired properties. Since \(p(0, 0) \) is finite, this holds for nearly all \(r \). □

Now the other case. Let \(R(K) \) be the set of all rational functions over \(K \). If \(H \) is a subset of \(R(K) \) and if for each \(f \in H, r \in K \) is in the domain of \(f \), then \(H(r) \) shall denote the set of all \(f(r) \), with \(f \in H \). Let \(f \in R(K) \) and \(a \in K \) such that \(f(0) \neq a \). Then for nearly all \(r \in K, f(r) \neq a \). So we obtain:

5. Lemma. Let \(H \subseteq R(K) \) and \(M \subseteq K \) be finite. If \(H(0) \cap M = \emptyset \), then for nearly all \(r \in K, H(r) \cap M = \emptyset \).

6. Lemma. Let \(\varphi \in \Phi_K \) and let \(H \) be a finite subset of \(R(K) \) with \(1 \notin H(0) \), then there is a finite \(H' \subseteq R(K) \) such that, for nearly all \(r \in K, \varphi(H(r)) = H'(r) \).

Proof. If \(\varphi = \varphi_d \) we define \(H' \) to be \(\{ f(1-g) | f, g \in H \} \). Since \(1 \notin H(0) \) we have for nearly all \(r \in K, 1 \notin H(r) \). Let \(r \) be such an element of \(K \). Then \(\varphi_d(H(r)) = H(r)/(1-H(r)) = H'(r) \). Thus, for nearly all \(r \in K, \varphi_d(H(r)) = H'(r) \). The proof is similar if \(\varphi = \varphi_e, \varphi_b \) or \(\varphi_a \). □

Now let \(p \in P \) and let \(H \) be a finite subset of \(R(K) \). By induction over \(n \) we can prove

7. Theorem. If \(H(0) \) is a subset of \(p(n, 0) \), then for nearly all \(r \in K \) there is a condition \(p_r \geq p \) such that:

1. \(H(r) \subseteq p_r(n, 0) \),
2. \(p_r(m, i) = p(m, i) \) if \(m > n \) or \(i = 1 \).

(i) The Theorem holds for \(n = 0 \).

Proof. Since \(H(0) \) is a subset of \(p(n, 0), H(0) \cap p(0, 1) = \emptyset \). By Lemma 5, we have for nearly all \(r \in K \) that \(p(0, 1) \cap H(r) = \emptyset \). Let \(r \) be such an element. If \(p_r \) is defined by

\[
p_r(m, i) = \begin{cases}
p(m, i) \cup H(r) & \text{if } m = 0 \text{ and } i = 0, \\
p(m, i) & \text{otherwise},
\end{cases}
\]

then \(p_r \) has the desired properties.

(ii) Assume the Theorem holds for \(n \), then it holds for \(n + 1 \).

Proof. First we choose a finite subset \(H'' \) of \(R(K) \), with \(H''(0) \subseteq p(n, 0) \) as follows: Let \(H' = H \cup \{ f_a(a \in p(n+1, 0)) \} \), where \(f_a \) is the function defined by \(f_a(r) = a \) for every \(r \in K \). Since \(1 \notin p(n+1, 0) \) and \(H'(0) \subseteq p(n+1, 0) \), we have by Lemma 6 that there is a finite \(H'' \subseteq R(K) \) such that
for nearly all \(r \in K \), \(H'(r) = \varphi_n(H'(r)) \). Let \(L \) be the set of these \(r \)'s. If we define \(H'' = H' \cup H'' \), then we have that \(H''(0) \subseteq p(n, 0) \). By assumption there are for nearly all \(r \in K \) conditions \(p_r' \geq p \) such that:

1. \(H''(r) \subseteq p_r'(n, 0) \),
2. \(p(m, i) = p_r'(m, i) \) if \(m > n \) or \(i = 1 \).

Let \(L' \) be the set of these \(r \)'s and let \(r \in L \cap L' \). Then we define \(p_r \) by

\[
p_r(m, i) = p_r'(m, i) \cup H(r) \quad \text{if } m = n + 1 \quad \text{and} \quad i = 0,
\]

\[
= p_r'(m, i) \quad \text{otherwise}.
\]

\(p_r \) has the desired properties. Since nearly all \(r \in K \) are in \(L \cap L' \), the theorem holds for \(n + 1 \).

8. COROLLARY. Let \(p \) be a condition and \(n \in \omega \). Then for nearly all \(r \in K \) there are conditions \(p_r' \geq p \), such that \(r \in p_r(n, 0) \).

PROOF. Take \(H \) to be \(\{\text{id}\} \), where \(\text{id} \) is the function which maps every element of \(K \) onto itself. By Theorem 7 we get the desired result. \(\square \)

4. Entwined sets of chains of conditions. To prove that there are \(2^{2^\aleph_0} \) many field topologies on \(K \), it suffices to show that there is a set \(\mathcal{G} \) of power \(2^{2^\aleph_0} \) of chains of conditions such that for any two different non-empty subsets \(\mathcal{G}_1 \) and \(\mathcal{G}_2 \) of \(\mathcal{G} \) the join-topologies \(\bigvee \{\mathcal{F}_G | G \in \mathcal{G}_1\} \) and \(\bigvee \{\mathcal{F}_G | G \in \mathcal{G}_2\} \) are also different.

9. DEFINITION. Let \(\mathcal{G} \) be a set of chains of conditions. \(\mathcal{G} \) is called entwined if, for every \(n \in \omega \) and for every finite subset \(\{G_i | 0 \leq i \leq m\} \) of \(\mathcal{G} \), there are conditions \(p_i \in G_i \), \(0 \leq i \leq m \), such that

\[
\bigcap \{p_i(n, 0) | 1 \leq i \leq m\} \cap p_0(0, 1) \quad \text{is not empty}.
\]

An easy consequence of Definition 9 is that there is a sequence which converges to zero in all of the topologies \(\mathcal{T}_{G_1}, \ldots, \mathcal{T}_{G_m} \) but which is bounded away from zero in \(\mathcal{T}_{G_0} \).

10. THEOREM. If \(\mathcal{G} \) is entwined, then \(\bigvee \{\mathcal{T}_G | G \in \mathcal{G} \setminus \{G_0\}\} \) is not finer than \(\mathcal{T}_{G_0} \) for every \(G_0 \in \mathcal{G} \).

PROOF. Suppose \(\bigvee \{\mathcal{T}_G | G \in \mathcal{G} \setminus \{G_0\}\} \) is finer than \(\mathcal{T}_{G_0} \) for some \(G_0 \in \mathcal{G} \). Then there are \(G_1, \ldots, G_m \in \mathcal{G} \) and \(k_1, \ldots, k_m \in \omega \) such that

\[
\bigcap \{V_{G_i}^{G_{k_i}} | 1 \leq i \leq m\} \subset V_0^{G_0}.
\]

Let \(k_0 = \max\{|k_i| | 1 \leq i \leq m\} \). Since \(\mathcal{G} \) is entwined, there are conditions \(p_i \in G_i \), \(0 \leq i \leq m \), such that \(M = \bigcap \{p_i(k_0, 0) | 1 \leq i \leq m\} \cap p_0(0, 1) \) is not empty. If \(r \in M \), then \(r \in V_{k_0}^{G_i} \subset V_{k_i}^{G_{k_i}} \) and \(r \in V_0^{G_0} \). This is a contradiction. \(\square \)
11. Corollary. Let \mathcal{G} be entwined and $\mathcal{G}_1, \mathcal{G}_2$ nonempty different subsets of \mathcal{G}. Then $\bigvee \{ \mathcal{F}_G | G \in \mathcal{G}_1 \} \neq \bigvee \{ \mathcal{F}_G | G \in \mathcal{G}_2 \}$.

Proof. Let $\mathcal{G}_1, \mathcal{G}_2 \subseteq \mathcal{G}$ such that $\mathcal{G}_1 \neq \mathcal{G}_2$. We may suppose that there is a $G_0 \in \mathcal{G}_1$ with $G_0 \notin \mathcal{G}_2$. Because \mathcal{G} is entwined $\bigvee \{ \mathcal{F}_G | G \in \mathcal{G} \}\{\{G_0\}\}$ is not finer than \mathcal{F}_{G_0}. $\bigvee \{ \mathcal{F}_G | G \in \mathcal{G}_1 \} \{G_0\}$ is finer than $\bigvee \{ \mathcal{F}_G | G \in \mathcal{G}_2 \}$ and $\bigvee \{ \mathcal{F}_G | G \in \mathcal{G}_1 \}$ is finer than \mathcal{F}_{G_0}. Thus, $\bigvee \{ \mathcal{F}_G | G \in \mathcal{G}_2 \}$ is not finer than $\bigvee \{ \mathcal{F}_G | G \in \mathcal{G}_1 \}$.

Now we want to show that there is an entwined \mathcal{G} of power 2^{n_2}. We identify each natural number with the set of its predecessors. n_2 denotes the set of functions from n into 2 and n_2 the set of those from ω into 2. If f is such a function, then $f|n$ is the restriction of f to n. By induction over n, we shall choose, for each $f \in n_2+1$, a condition p' such that:

1. $p'|n \subseteq p'$.
2. $p'(0, 1) \cap \{ p^g(n, 0) | g \in n_2+1 \}$ is not empty.
3. There is an $r \in (n \cap \{ p^g(n, 0) | g \in n_2+1 \})$ and an $m \in \omega$, $m \neq 0$, such that $r^m \in \{ p^g(0, 1) | g \in n_2+1 \}$.

Let $p^* = p^0$. Assume that, for $f \in n_2$, p' is chosen. Let $(f_k)_{k \in \omega}$ be a well ordering of n_2+1. For every $f \in n_2+1$ we choose, by induction over $k \in m_n+1$ conditions, p_k' as follows: By Corollary 8 there are conditions p_k' such that $p^{f_k}_k \supseteq p^0_k$ and $M = \bigcap \{ p^f_k(n, 0) | f \in n_2+1 \}\{0\} \neq \varnothing$. Let $r \in M$ be given. If there is an $m \in \omega$ such that $r^m = 1$, then take p_k' to be p^f_k. If there is no $m \in \omega$ such that $r^m = 1$, then $\{ r^m | m \in \omega \}$ is infinite. Hence, by Theorem 4 there are conditions $p_0^g \supseteq p^0_k$ and an $m \in \omega$ such that $r^m \in \bigcap \{ p^g_k(0, 1) | f \in n_2+1 \}$. Suppose k_k' is already chosen. Then by Theorem 4 and Corollary 8 there are conditions p^f_{k+1} such that $p^f_{k+1} \supseteq p^f_k$ and $p^f_{k+1}(0, 1) \cap \{ p^g_{k+1}(n, 0) | f \in n_2+1 \}$ and $f \neq f_k'$ is nonempty. Let $p^* = p^m_{k+1}$. Then the conditions p', $f \in n_2+1$, have the desired properties. Now for $g \in \omega_2$, define G_g to be the chain $\{ p^{g_k}_k | n \in \omega \}$, and define \mathcal{G} to be $\{ G_g | g \in \omega_2 \}$.

12. Theorem. \mathcal{G} is an entwined set of power 2^{n_2} of chains of conditions.

Proof. It is sufficient to show that \mathcal{G} is entwined. Let $g_0 \in \omega_2$ and let $g_i \in \omega_2\{ g_0 \}$, $1 \leq i \leq m$. Then for each n there is a $k > n$ such that $g_k | k \notin \{ g_i | k \leq i \leq m \}$. By 2, we know that $p^{g_k}_k(0, 1) \cap \{ p^{g_k}_k(n, 0) | 1 \leq i \leq m \}$ is not empty. Since $k - 1 \geq n$ we have that $p^{g_k}_k(k+1, 0)$ is a subset of $p^{g_k}_k(n, 0)$. This implies that $p^{g_k}_k(0, 1) \cap \{ p^{g_k}_k(n, 0) | 1 \leq i \leq m \}$ is not empty. Thus, \mathcal{G} is entwined.

Now we shall prove that we have constructed \mathcal{G} in such a way that for each $\mathcal{G}_1 \subseteq \mathcal{G}$ the topology $\bigvee \{ \mathcal{F}_G | G \in \mathcal{G}_1 \}$ is not the join of locally bounded ring topologies. By [1] it is sufficient to show that there is a neighborhood V of zero such that for every neighborhood $U \subseteq V$ there is an $n \in \omega$ with $U^n \subseteq V$.

1973] THE NUMBER OF FIELD TOPOLOGIES ON COUNTABLE FIELDS 37
13. Theorem. For every $\mathcal{G}' \subseteq \mathcal{G}$, $\bigvee \{ \mathcal{F}_{G} | G \in \mathcal{G}' \}$ fails to be the join of locally bounded ring topologies.

Proof. Let $G_0 \in \mathcal{G}'$ be given and let U be a neighborhood of zero, $U \subseteq V_{0}^{G_0}$. Then there are finitely many $G_i \in \mathcal{G}'$, $1 \leq i \leq m$, and a $k \in \omega$ such that $\bigcap \{ V_{k}^{G_i} | 1 \leq i \leq m \} \subseteq U$. By the definition of \mathcal{G} there are functions $f_i \in k^{+1}2$, $0 \leq i \leq m$, such that $p^{f_i}(k, 0) \subseteq V_{k}^{G_i}$. From 3 it follows that there is an $r \in \bigcap \{ p^{f_i}(k, 0) | 1 \leq i \leq m \}$ and a $z \in \omega$, $z \neq 0$, such that $r^z \in p^{f_0}(0, 1)$. Hence, $U^z \subseteq V_{0}^{G_0}$ and therefore $\bigvee \{ \mathcal{F}_{G} | G \in \mathcal{G}' \}$ is not the join of locally bounded ring topologies.

References

Institut für Mathematik, Technische Universität, Hannover, Welfengarten 1, Hannover, West Germany