On Bazilevič functions
HTML articles powered by AMS MathViewer
- by Petru T. Mocanu, Maxwell O. Reade and Eligiusz J. Złotkiewicz
- Proc. Amer. Math. Soc. 39 (1973), 173-174
- DOI: https://doi.org/10.1090/S0002-9939-1973-0313491-5
- PDF | Request permission
Abstract:
The authors present a short proof of the well-known result that the Bazilevič functions of type $\alpha ,\alpha$ positive, are univalent. Moreover, those functions are “relatives” of the close-to-convex functions.References
- I. E. Bazilevič, On a case of integrability in quadratures of the Loewner-Kufarev equation, Mat. Sb. (N.S.) 37(79) (1955), 471–476 (Russian). MR 0072949
- F. R. Keogh and Sanford S. Miller, On the coefficients of Bazilevič functions, Proc. Amer. Math. Soc. 30 (1971), 492–496. MR 283191, DOI 10.1090/S0002-9939-1971-0283191-7
- Christian Pommerenke, Über die Subordination analytischer Funktionen, J. Reine Angew. Math. 218 (1965), 159–173 (German). MR 180669, DOI 10.1515/crll.1965.218.159
- T. Sheil-Small, On Bazilevič functions, Quart. J. Math. Oxford Ser. (2) 23 (1972), 135–142. MR 299799, DOI 10.1093/qmath/23.2.135
- Toshio Umezawa, Multivalently close-to-convex functions, Proc. Amer. Math. Soc. 8 (1957), 869–874. MR 90654, DOI 10.1090/S0002-9939-1957-0090654-9
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 39 (1973), 173-174
- MSC: Primary 30A32
- DOI: https://doi.org/10.1090/S0002-9939-1973-0313491-5
- MathSciNet review: 0313491