COUNTING \(p \)-SUBGROUPS

ERNST SNAPPER

Abstract. There are many theorems which state that the number of \(p \)-subgroups of a finite group, where these \(p \)-subgroups satisfy varying conditions, is congruent 1 modulo \(p \). We derive here a simple theorem which has all these special theorems as corollaries.

1. Introduction. \(G \) stands for a finite group of order \(g \) and \(p \) for a prime number dividing \(g \). The theorem, mentioned in the abstract, is:

Theorem. Let \(K \) be a subgroup of \(G \) of order \(p^m \). If \(m \leq n \) and \(p^n \) divides \(g \), the number of subgroups of \(G \) of order \(p^n \) which contain \(K \) is congruent 1 modulo \(p \).

Several special cases of the theorem occur in the literature. For example, if \(m = 0 \), one obtains that the number of subgroups of \(G \) of order \(p^n \) is congruent 1 modulo \(p \); or, if \(n \) is chosen as large as possible, one obtains that the number of Sylow \(p \)-subgroups of \(G \) which contain \(K \) is congruent 1 modulo \(p \) [1, p. 152].

2. The proof of the theorem. The theorem is trivial when \(n = m \).

Case 1. \(n = m + 1 \). Suppose that \(K \) is contained in \(t \) subgroups \(H_1, \ldots, H_t \) of \(G \) of order \(p^{m+1} \). Since \(p^n \) divides \(g \), \(t \geq 1 \), and it is well known that \(K \) is normal in each \(H_i \). Consequently, the groups \(H_i \) are subgroups of the normalizer \(N \) of \(K \) in \(G \), whence \(t \) is the number of subgroups of order \(p \) of \(N/K \). Clearly, \(p^{[N:K]} \) and there are of course several elementary ways of showing that the number of subgroups of order \(p \) of a group whose order is divisible by \(p \) is congruent 1 modulo \(p \).

Case 2. \(n = m + 1 + s \), where \(s \geq 1 \). We make the induction hypothesis that the theorem has been proved for \(n = m, m + 1, \ldots, m + s \). Let \(L_1, \ldots, L_t \) be the subgroups of \(G \) of order \(p^{m+s} \) which contain \(K \), and \(H_1, \ldots, H_u \) the subgroups of order \(p^{m+s+1} \) containing \(K \). Since \(p^n \mid g \), \(t \) and \(u \) are positive, and we consider the \(t \times u \) matrix \((a_{ij}) \) where \(a_{ij} = 1 \) if \(L_i \subseteq H_j \) and 0 otherwise. The row sum \(\sum_{j=1}^u a_{ij} \) of the matrix is denoted...
by \(r_i \), and the column sum \(\sum_{i=1}^t a_{ij} \) by \(c_j \), which gives the following tableau

\[
\begin{array}{ccc|c}
H_1 & \cdots & H_u & r_1 \\
L_1 & & a_{ij} & \\
& & & \\
& & & \\
L_t & c_1 & \cdots & c_u \\
\end{array}
\]

By the induction hypothesis, \(t \equiv 1 \pmod{p} \) and we must show that \(u \equiv 1 \pmod{p} \). Since \(r_1 + \cdots + r_t = c_1 + \cdots + c_u \), it is sufficient to show that each \(r_i \equiv 1 \pmod{p} \) and each \(c_j \equiv 1 \pmod{p} \). However, \(r_i \) is the number of subgroups of order \(p^{m+s+1} \) of \(G \) which contain \(L_i \), whence \(r_i \equiv 1 \pmod{p} \) by Case 1. Furthermore, \(c_j \) is the number of subgroups of order \(p^{m+s} \) of \(H_j \) which contain \(K \), whence \(c_j \equiv 1 \pmod{p} \) by the induction hypothesis. Done.

3. Normal \(p \)-subgroups. The theorem also enables one to obtain the standard statements which refer to normal \(p \)-subgroups. The proof of the following corollary shows how this works.

Corollary. Let everything be as in the theorem, but assume furthermore that \(G \) is a \(p \)-group and \(K \) is normal in \(G \). Then, the number of normal subgroups of \(G \) of order \(p^n \) which contain \(K \) is congruent 1 modulo \(p \) \([1, p. 129]\).

Proof. Let \(\{ H_1, \cdots, H_t \} \) be the set of subgroups of \(G \) of order \(p^n \) which contain \(K \). Since \(K \) is normal in \(G \), \(G \) acts on this set of groups by inner automorphisms. Since \(G \) is a \(p \)-group, the number of fixed points of \(G \) in the permutation representation \((G, \{ H_1, \cdots, H_t \})\) is congruent \(t \pmod{p} \). However, \(G \) leaves \(H_i \) fixed if and only if \(H_i \) is normal in \(G \), and \(t \equiv 1 \pmod{p} \) by the theorem.

Reference

Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755