Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Multipliers for the space of almost-convergent functions on a semigroup


Authors: Ching Chou and J. Peter Duran
Journal: Proc. Amer. Math. Soc. 39 (1973), 125-128
MSC: Primary 43A07; Secondary 43A22
DOI: https://doi.org/10.1090/S0002-9939-1973-0315356-1
MathSciNet review: 0315356
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $S$ be a countably infinite left amenable cancellative semigroup, $FL(S)$ the space of left almost-convergent functions on $S$. The purpose of this paper is to show that the following two statements concerning a bounded real function $f$ on $S$ are equivalent: (i) $f \cdot FL(S) \subset FL(S)$; (ii) there is a constant $\alpha$ such that for each $\varepsilon > 0$ there exists a set $A \subset S$ satisfying (a) $\varphi ({X_A}) = 0$ for each left invariant mean $\varphi$ on $S$ and (b) $|f(x) - \alpha | < \varepsilon$ if $x \in S\backslash A$.


References [Enhancements On Off] (What's this?)

  • Ching Chou, The multipliers of the space of almost convergent sequences, Illinois J. Math. 16 (1972), 687–694. MR 315365
  • Mahlon M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544. MR 92128
  • Mahlon M. Day, Semigroups and amenability, Semigroups (Proc. Sympos., Wayne State Univ., Detroit, Mich., 1968) Academic Press, New York, 1969, pp. 5–53. MR 0265502
  • Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
  • E. Granirer, On amenable semigroups with a finite-dimensional set of invariant means. I, Illinois J. Math. 7 (1963), 32–48. MR 144197
  • S. P. Lloyd, Subalgebras in a subspace of $C(X)$, Illinois J. Math. 14 (1970), 259–267. MR 264400
  • G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190. MR 27868, DOI https://doi.org/10.1007/BF02393648

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A07, 43A22

Retrieve articles in all journals with MSC: 43A07, 43A22


Additional Information

Keywords: Amenable semigroups, almost-convergence, multipliers, invariant means, weak Cauchy sequences
Article copyright: © Copyright 1973 American Mathematical Society