MULTIPLIERS FOR THE SPACE OF ALMOST-CONVERGENT FUNCTIONS ON A SEMIGROUP

CHING CHOU AND J. PETER DURAN

Abstract. Let S be a countably infinite left amenable cancellative semigroup, $FL(S)$ the space of left almost-convergent functions on S. The purpose of this paper is to show that the following two statements concerning a bounded real function f on S are equivalent: (i) $f \cdot FL(S) \subset FL(S)$; (ii) there is a constant α such that for each $\varepsilon > 0$ there exists a set $A \subset S$ satisfying (a) $\varphi(X_A) = 0$ for each left invariant mean φ on S and (b) $|f(x) - \alpha| < \varepsilon$ if $x \in S \setminus A$.

1. Let S be a semigroup, $m(S)$ the space of bounded real functions on S with the sup norm. $\varphi \in m(S)^*$ is called a left invariant mean on S if $\|\varphi\| = 1$, $\varphi \geq 0$ and $\varphi(l_s f) = \varphi(f)$ for $s \in S$ and $f \in m(S)$, where $l_s f \in m(S)$ is defined by $(l_s f)(t) = f(st)$, $t \in S$. The set of left invariant means on S is denoted by $ML(S)$. If $ML(S)$ is nonempty, then S is said to be left amenable [2]. A bounded real function f on a left amenable semigroup is called left almost-convergent if $\varphi(f)$ equals a fixed constant $d(f)$ as φ runs through $ML(S)$. The set of all left almost-convergent functions, denoted by $FL(S)$, is a vector subspace of $m(S)$ and it contains constant functions. But, in general, it is not closed under multiplication. The purpose of this paper is to study this aspect of $FL(S)$ and our main result is the following.

Theorem. Let S be a countable left-cancellative left amenable semigroup without finite left ideals. Then the following two statements concerning a function $f \in m(S)$ are equivalent:

(i) f is a multiplier of $FL(S)$, i.e., $f \cdot FL(S) \subset FL(S)$;

(ii) f is S-convergent to a constant α, i.e., for a given $\varepsilon > 0$ there exists a set $A \subset S$ such that

(a) $\varphi(X_A) = 0$ for each $\varphi \in ML(S)$, and

(b) $|f(x) - \alpha| < \varepsilon$ if $x \in S \setminus A$.

2. From now on S will always denote a left-cancellative left amenable semigroup without finite left ideals.

Presented to the Society, January 17, 1972; received by the editors May 31, 1972.

AMS (MOS) subject classifications (1970). Primary 43A07; Secondary 46N05.

Key words and phrases. Amenable semigroups, almost-convergence, multipliers, invariant means, weak Cauchy sequences.

© American Mathematical Society 1973

125
Remarks. (1) A set $A \subseteq S$ is said to be left almost-convergent if its characteristic function χ_A is left almost-convergent. In this case we denote $d(\chi_A)$ by $d(A)$. Roughly speaking, a set $A \subseteq S$ is left almost-convergent if it is evenly distributed in S with respect to the semigroup structure and $d(A)$ indicates the density of $A \subseteq S$. In particular, $d(A) = 0$ means that A is sparsely distributed in S. (The set A in the statement (ii) of the above Theorem is such a set.) For example, when $S = \mathbb{N}$, the additive semigroup of positive integers, a set $A \subseteq \mathbb{N}$ is left almost-convergent if and only if
\[
\lim_{n \to \infty} \frac{1}{n} \text{Card}\{k, k + 1, \ldots, k + n - 1\} \cap A = d(A)
\]
evenly distributed in S with respect to the semigroup structure and $d(A)$ indicates the density of $A \subseteq S$. In particular, $d(A) = 0$ means that A is sparsely distributed in S. (The set A in the statement (ii) of the above Theorem is such a set.) For example, when $S = \mathbb{N}$, the additive semigroup of positive integers, a set $A \subseteq \mathbb{N}$ is left almost-convergent if and only if
\[
\lim_{n \to \infty} \frac{1}{n} \text{Card}\{k, k + 1, \ldots, k + n - 1\} \cap A = d(A)
\]
exists uniformly in k [7].

(2) Since S contains no finite left ideals, $d(B) = 0$ for each finite subset $B \subseteq S$ (cf. [5]). Therefore if f converges to a at infinity, i.e., if given $\varepsilon > 0$ there exists a finite set $B \subseteq S$ such that $|f(x) - a| < \varepsilon$ whenever $x \notin B$, then f S-converges to a. On the other hand, the space of S-convergent functions is much smaller than $FL(S)$. Indeed, $FL(S)$ separates points of βS [6], the Stone-Cech compactification of the discrete set S, while it is easy to see that $f \in m(S)$ is S-convergent if and only if f is a constant on the set

\[
K(S) = \text{cl}_{\beta S} \cup \{\text{supp } \phi : \phi \in ML(S)\},
\]
(cf. [1]). Here we consider a bounded real function on S as a continuous function on βS and a mean on $m(S)$ as a probability measure on βS. In particular, if $\phi \in ML(S)$, supp ϕ denotes the support of the measure ϕ.

(3) As in [2], let EG denote the smallest class of groups which contains all finite groups, all abelian groups and is closed under the following four ways of constructing new groups from given ones: (a) subgroup; (b) factor group; (c) group extension; and (d) direct limits.

Each group in EG is amenable and they constitute all the known amenable groups [2]. If we assume that S is an infinite group in EG, then a stronger result is known [1]: $f \in m(S)$ is S-convergent if and only if

\[
\begin{align*}
(a) & f \cdot \chi_A \in FL(S) \text{ for each left almost-convergent set } A, \\
(b) & f^n \in FL(S), n = 1, 2, \ldots ;
\end{align*}
\]
in particular, if $A \subseteq S$ and $A \cap B$ is left almost-convergent for each $\chi_B \in FL(S)$, then $d(A) = 1$ or 0. It is not clear whether our Theorem yields the same conclusion. The proof of our Theorem is completely different from the proof in [1].

3. Proof of the Theorem. (ii) \Rightarrow (i) is easy, cf. [1].

(i) \Rightarrow (ii). Let f be a multiplier of $FL(S)$. To show that f is S-convergent, it suffices to show that $f \equiv d(f)$ on supp ϕ. We claim that this follows from the following assertion:

\[
\begin{align*}
(a) & \text{ If } g \in FL(S) \text{ and } \phi \in ML(S), \text{ then } \phi(fg) = \phi(f)\phi(g).
\end{align*}
\]
Indeed, if (α) holds and if φ ∈ ML(S) then

φ((f − d(f))^2) = (φ(f) − d(f))^2 = 0.

Therefore f ≡ d(f) on supp φ as we wanted.

Proof of (α). We shall consider l^1(S)^* = m(S) and l^1(S)^** = m(S)^*.

If φ ∈ l^1(S) and h ∈ m(S), then h(φ) = h(φ) = ∑_{t ∈ S} h(t)φ(t). Since S is left amenable and countable there exists a sequence φ_n in l^1(S) such that \|φ_n\|_1 = 1, φ_n ≥ 0, and \lim_n (φ_n(h) − φ_n(λh)) = 0 for each h ∈ m(S) and each \lambda ∈ S [5, Lemma 5.1]. We shall need the following two well-known facts (cf. [3, §9]):

(β) If g ∈ FL(S), then \lim_n φ_n(g) = d(g).

(γ) FL(S) = the closed linear span of \{l_x h : x ∈ S, h ∈ m(S)\} \cup \{χ_S\}.

Let \lambda ∈ S be fixed. Set \psi_n = φ_n · f − l_x φ_n · f, i.e., \psi_n(t) = \phi_n(t) − φ_n(x t) f(x t), t ∈ S. Then \psi_n ∈ l^1(S). We claim that \psi_n is a weak Cauchy sequence in l^1(S). Indeed, if h ∈ m(S),

\[\psi_n(l_x h) = \sum_{t ∈ S} (\phi_n(t) f(t)(x t) − \phi_n(x t) f(x t) h(x t)) = \sum_{t ∈ S} \phi_n(t) f(t)(x t) h(x t) + \sum_{t ∈ S \setminus x S} \phi_n(t) f(t) h(t) = \psi_n(f · (l_x h) − h) + \psi_n(f h · \chi_{S \setminus x S}) = a_n + b_n.\]

Note that f · (l_x h − h) ∈ FL(S), since f is a multiplier of FL(S) and l_x h − h ∈ FL(S). Therefore by (β) \lim_n a_n = d(f · (l_x h − h)). Note also that \chi_{S \setminus t S} = χ_{l_x S} = χ_{S} = 1, i.e., \psi_n(\chi_{S \setminus t S}) = 0 for each \lambda ∈ S. Therefore \chi_{S \setminus t S} is left almost-convergent to zero. By (β) again, we get

\[|b_n| \leq \|f\|_∞ \|h\|_∞ \phi_n(\chi_{S \setminus t S}) \to 0 \text{ as } n \to ∞.\]

Therefore we have obtained:

(δ) \lim_n \phi_n(l_x h) = d(f · (l_x h − h)), h ∈ m(S).

Since S is left-cancellative, each k ∈ m(S) is of the form l_x h for some h ∈ m(S). Therefore \lim_n \psi_n(h) exists for each h ∈ m(S), i.e., \psi_n is a weak Cauchy sequence as we claimed. Since l^1(S) is weakly sequentially complete [4, p. 374], there exists ψ ∈ l^1(S) such that ψ = lim_n \psi_n in the weak topology. Certainly, \psi(t) = lim_n \psi_n(t) for \lambda ∈ S. On the other hand,

\[
\lim_n \psi_n(t) = lim_n \phi_n(\chi_{t \setminus t}) = 0,
\]

since \chi_{t \setminus t} ∈ FL(S) and d(\chi_{t \setminus t}) = 0 (cf. Remark (1)). Hence

\[\psi(t) = \lim_n (\phi_n(t) f(t) − \phi_n(x t) f(x t)) = 0.\]

So, \psi ≡ 0. By (δ), d(f · (l_x h − h)) = 0 = d(f) · d(l_x h − h). It is of course true
that \(d(f \cdot c_{\Phi}) = d(f) \cdot d(c_{\Phi}) \). Hence (\(\alpha \)) follows from (\(\gamma \)) and the above observation.

REFERENCES

Department of Mathematics, State University of New York at Buffalo, Amherst, New York 14226

Department of Mathematics, University of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico 00708