Product integrals and exponentials in commutative Banach algebras
HTML articles powered by AMS MathViewer
- by Jon C. Helton
- Proc. Amer. Math. Soc. 39 (1973), 155-162
- DOI: https://doi.org/10.1090/S0002-9939-1973-0316643-3
- PDF | Request permission
Abstract:
Functions are from $R \times R$ to $X$, where $R$ represents the real numbers and $X$ represents a commutative Banach algebra with identity element. The function $G \in O{C^ \circ }$ on $[a,b]$ only if ${}_a{\prod ^b}(1 + G)$ exists and is not zero and there exists a subdivision $D$ of $[a,b]$ and a number $B$ such that if $J$ is a refinement of $D$, then ${[\prod \nolimits _J {(1 + G)} ]^{ - 1}}$ exists and $|{[\prod \nolimits _J {(1 + G)} ]^{ - 1}}| < B$. If $|G| < 1$ on $[a,b]$, then each of the following consists of two equivalent statements: A. (1) $G \in O{C^ \circ }$ on $[a,b]$, and (2) $\int _a^b {\ln (1 + G)}$ exists. B. (1) $G \in O{C^ \circ }$ on $[a,b]$ and $\int _a^b {|1 + G - \prod {(1 + G)} | = 0}$, and (2) $\int _a^b {|\ln (1 + G) - \int {\ln (1 + G)|} = 0}$. Further, if $\beta > 0,|G| < 1 - \beta$ on $[a,b]$, each of $G(p,{p^ + }),G({p^ - },p),G({p^ + },{p^ + })$ and $G({p^ - },{p^ - })$ exist for $p \in [a,b],\int _a^b {|{G^2} - \int {{G^2}|} } = 0$ and ${G^2}$ has bounded variation on $[a,b]$, then each of the following consists of two equivalent statements: C. (1) $G \in O{C^ \circ }$ on $[a,b]$, and (2) $\int _a^b G$ exists. D. (1) $G \in 0{C^ \circ }$ on $[a,b]$ and $\int _a^b {|1 + G} - \prod {(1 + G)} | = 0$, and (2) $\int _a^b {|G - \int {G|} = 0}$.References
- W. P. Davis and J. A. Chatfield, Concerning product integrals and exponentials, Proc. Amer. Math. Soc. 25 (1970), 743–747. MR 267068, DOI 10.1090/S0002-9939-1970-0267068-8
- Burrell W. Helton, Integral equations and product integrals, Pacific J. Math. 16 (1966), 297–322. MR 188731
- Burrell W. Helton, A product integral representation for a Gronwall inequality, Proc. Amer. Math. Soc. 23 (1969), 493–500. MR 248310, DOI 10.1090/S0002-9939-1969-0248310-8
- Jon C. Helton, Some interdependencies of sum and product integrals, Proc. Amer. Math. Soc. 37 (1973), 201–206. MR 308340, DOI 10.1090/S0002-9939-1973-0308340-5 —, Product integrals, bounds and inverses, Texas J. Sci. (to appear).
- J. S. MacNerney, Integral equations and semigroups, Illinois J. Math. 7 (1963), 148–173. MR 144179
- P. R. Masani, Multiplicative Riemann integration in normed rings, Trans. Amer. Math. Soc. 61 (1947), 147–192. MR 18719, DOI 10.1090/S0002-9947-1947-0018719-6
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 39 (1973), 155-162
- MSC: Primary 26A39; Secondary 46J99
- DOI: https://doi.org/10.1090/S0002-9939-1973-0316643-3
- MathSciNet review: 0316643