$C^{k}$, weakly holomorphic functions on analytic sets
HTML articles powered by AMS MathViewer
- by Joseph Becker
- Proc. Amer. Math. Soc. 39 (1973), 89-93
- DOI: https://doi.org/10.1090/S0002-9939-1973-0322214-5
- PDF | Request permission
Abstract:
Let $V$ be a complex analytic set and $p \in V$. Let $\mathcal {O}(V),\tilde {\mathcal {O}}(V)$, and ${C^k}(V)$ denote respectively the rings of germs of holomorphic, weakly holomorphic, and $k$-times continuously differentiable functions on $V$. Spallek proved that there exists sufficiently large $k$ such that ${C^k}(V) \cap \tilde {\mathcal {O}}(V) = \mathcal {O}(V)$. In this paper I give a new proof of this result for curves and hypersurfaces which also establishes that the conduction number of the singularity is an upper bound for $k$. This estimate also holds for any pure dimensional variety off of a subvariety of codimension two.References
- Joseph Becker and John C. Polking, $C^{k}$ weakly holomorphic functions on an analytic curve, Rice Univ. Stud. 59 (1973), no. 2, 1–12. MR 330521
- R. C. Gunning, Lectures on complex analytic varieties: The local parametrization theorem, Mathematical Notes, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. MR 0273060
- Raghavan Narasimhan, Introduction to the theory of analytic spaces, Lecture Notes in Mathematics, No. 25, Springer-Verlag, Berlin-New York, 1966. MR 0217337 N. Nörlund, Vorlesunger über Differenzenrechnung, Springer, Berlin, 1924.
- Yum-tong Siu, $O^{N}$-approximable and holomorphic functions on complex spaces, Duke Math. J. 36 (1969), 451–454. MR 245838
- Karlheinz Spallek, Differenzierbare und holomorphe Funktionen auf analytischen Mengen, Math. Ann. 161 (1965), 143–162 (German). MR 0196136, DOI 10.1007/BF01360852
- Karlheinz Spallek, Zum Satz von Osgood und Hartogs für analytische Moduln. I, Math. Ann. 178 (1968), 83–118 (German). MR 232019, DOI 10.1007/BF01350653
- Karlheinz Spallek, Zum Satz von Osgood und Hartogs für analytische Moduln. II, Math. Ann. 182 (1969), 77–94 (German). MR 249662, DOI 10.1007/BF01376215
- John Stutz, Analytic sets as branched coverings, Trans. Amer. Math. Soc. 166 (1972), 241–259. MR 324068, DOI 10.1090/S0002-9947-1972-0324068-3
- Hassler Whitney, Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 205–244. MR 0188486
- Shreeram Abhyankar, Concepts of order and rank on a complex space, and a condition for normality, Math. Ann. 141 (1960), 171–192. MR 123020, DOI 10.1007/BF01360171
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 39 (1973), 89-93
- MSC: Primary 32K15; Secondary 32B10
- DOI: https://doi.org/10.1090/S0002-9939-1973-0322214-5
- MathSciNet review: 0322214