On higher order nonsingular immersions of Dold manifolds
HTML articles powered by AMS MathViewer
- by Wei-lung Ting
- Proc. Amer. Math. Soc. 39 (1973), 195-200
- DOI: https://doi.org/10.1090/S0002-9939-1973-0377934-3
- PDF | Request permission
Abstract:
In this paper we employ $\gamma$-operations and characteristic classes to study nonexistence of higher order nonsingular immersions of a Dold manifold into a Euclidean space.References
- M. F. Atiyah, Immersions and embeddings of manifolds, Topology 1 (1962), 125β132. MR 145549, DOI 10.1016/0040-9383(65)90020-0
- E. A. Feldman, The geometry of immersions. I, Trans. Amer. Math. Soc. 120 (1965), 185β224. MR 185602, DOI 10.1090/S0002-9947-1965-0185602-6
- William Francis Pohl, Differential geometry of higher order, Topology 1 (1962), 169β211. MR 154293, DOI 10.1016/0040-9383(62)90103-9
- Haruo Suzuki, Bounds for dimensions of odd order nonsingular immersions of $RP^{n}$, Trans. Amer. Math. Soc. 121 (1966), 269β275. MR 192508, DOI 10.1090/S0002-9947-1966-0192508-6
- Haruo Suzuki, Characteristic classes of some higher order tangent bundles of complex projective spaces, J. Math. Soc. Japan 18 (1966), 386β393. MR 212833, DOI 10.2969/jmsj/01840386
- Haruo Suzuki, Higher order non-singular immersions in projective spaces, Quart. J. Math. Oxford Ser. (2) 20 (1969), 33β44. MR 240825, DOI 10.1093/qmath/20.1.33
- J. J. Ucci, Immersions and embeddings of Dold manifolds, Topology 4 (1965), 283β293. MR 187250, DOI 10.1016/0040-9383(65)90012-1
- ChikΓ΄ Yoshioka, On the higher order non-singular immersion, Sci. Rep. Niigata Univ. Ser. A 5 (1967), 23β30. MR 233368
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 39 (1973), 195-200
- MSC: Primary 57D40
- DOI: https://doi.org/10.1090/S0002-9939-1973-0377934-3
- MathSciNet review: 0377934