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ON THE  GROWTH  OF  THE  TAYLOR  COEFFICIENTS
OF AUTOMORPHIC  FORMS

THOMAS A.  METZGER1

Abstract. The growth of the Taylor coefficients of an auto-

morphic form of dimension —2 with respect to a Fuchsian group T

is related to the area integral Jfjj \F\s(\ — \z\%)'dxdy, and it is found

that these coefficients must grow faster than a power of«. Moreover

if Fe H(p, T) then these coefficients must grow slower than a

different power of n and, in fact, an\n is square summable if either

p=2 or 1</><oo and T is finitely generated of the second kind.

1. Introduction. Throughout Y shall stand for a Fuchsian group

acting on the unit disk [/(={z:[z|<l}) of the complex plane. We shall

assume that Y is of convergence type, i.e.,

(l.i) 2 iT'(z)i < °° for a11 z in u-
Ter

We note that (1.1) is equivalent to the fact that the associated Riemann

surface U¡Y is hyperbolic (cf. Tsuji [9, p. 522]). If F is a function defined on

U, then we say that F is an automorphic form of degree —2 if

F(Tz)T'(z) = F(z)   for all T in Y and z in U.

We define

(1.2) X-!(z) - (1 - \z\2),        dm(z) = X2(z) dx dy,

and note that X-1(Tz) = \T'(z)\X"1(z) and dco(Tz)=dco(z) for all conformai

automorphisms T of U onto itself. If Q is a fundamental region for Y

whose boundary has two dimensional measure zero, then we define

H(p, Y) (1 ̂ p< oo) to be the space of holomorphic automorphic forms of

Presented to the Society, January 17, 1972 under the title On the Taylor coefficients

of automorphic forms; received by the editors March 16, 1972 and, in revised form,

September 29, 1972.

AMS (MOS) subject classifications (1970). Primary 30A58; Secondary 30A10.

Key words and phrases. Taylor coefficients,/»-integrable, automorphic forms, Fuchsian

groups.

1 Part of the results are contained in the author's 1971 Ph.D. dissertation at Purdue

University, written under Professor K. V. Rajeswara Rao. Also the author wishes to

thank the referee for his helpful comments on the original version.

© American Mathematical Society 1973

321

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



322 T.  A.   METZGER [July

degree —2 with respect to Y such that ||F||î)<oo where

\\F\\l=[[\F(z)\»X-%z)dco(z).

si

We note that 7/(1, T) = {0} for a large class of groups Y (cf. [5, Theorem

3]). 7/(co, T) is defined to be the space of holomorphic automorphic

forms of degree —2 with respect to Y with the norm

||F|L=sup|F(z)|r1(z)< oo.
zsV

In this paper we shall obtain estimates on the growth of the Maclaurin

coefficients of holomorphic automorphic forms of dimension —2 by

relating such growth to the finiteness of integrals of the form (cf. [3])

(1.3) [[\F\X\-\z\*fdxdy.

Although all of our work is done for the case Y of convergence type and

automorphic forms of dimension —2, analogous results could be stated and

proved for arbitrary Y and automorphic forms of dimension —2q<—2.

2. Lower limits on the order of growth of the coefficients. We shall first

show that the Maclaurin coefficients of an automorphic form cannot grow

"too" slowly.

Theorem 1. Suppose Y is such that 2rer |7"(z)|r=oo/or some z in U.

Let F(z)=2"=oanz"» F^O, be an arbitrary (holomorphic) automorphic

form of degree —2 with respect to Y, then, for any i<r/2, an^O(nl).

Note. If 2Ter \T'0)\r=co for one z in U then 2rer \T'0)\r=cc for all

z in U.

Proof. Suppose an=0(nt), then 2"=o (KI2/(«+l)1+r)<°°- Since

Y(x)¡Y(x+a)~x-a, it follows that

^ Kl2 Y(r + l)Y(n + 1) ^

£?o        Y(n + r + 2)

this in turn implies, since ß(p,q) = Y(p)Y(q)IY(p+q),

£ KI2Í (1 - u)run du < oo.

Now upon letting u = p2, where |z| = o, we see that Pareseval's formula
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implies that

i(Vm - M2)' dxdy = % \an\2 \\\ - p2)y«+1 dp < oo.
JJ n=o        Jo
u

But this cannot happen if F^O for

oo >|Y|F|2 (1 - |z|2)r dxdy=2   iïlFI2 (1 - |z|2)r dx dy

u Ta

= ¡{\F\2(l-\z\2y2\T'(zWdxdy,
JJ Ter
a

since |F|2 dx dy is Y invariant. Since 2rer \T'(z)\r= oo we have arrived at

a contradiction and the proof of the theorem is complete.

Corollary 2. Suppose F is as above and Y is not cyclic hyperbolic, then

ß„*0(l).

Proof. If Y is not cyclic hyperbolic, then Beardon [1] proved that

there exists an r>0 such that 2rer \T'(t)\r=<x>; hence choosing r=0 in

Theorem 1 completes the proof.

Remark. If Y is cyclic hyperbolic, Beardon [1, p. 475] showed that

2rer \T'(t)\r<co for all r>0, however in this case we have an^O(n~z)

for all £>0.

3. Upper limits on the growth of the coefficients. We note that in the

above theorem and its corollary no assumption was made about the growth

of F. If we make such an assumption, i.e., Fe H(p, Y), then it can be

shown that the Maclaurin coefficients of Fcannot grow "too" fast. In order

to prove this we first need

Lemma 3. Let F e H(p, Y) (1 ̂ p< oo). Then (1.3) is finite with s=p and

t=p-\.

Proof.

j]W(l - ¡zfy^dxdy =j(\FX-1\p(l - \z\2)dco(z)

u u

= (Y|FA-T2(l-|Tz|Vco(z)
JJ Ter

SI

[sup 2(1-^    sup >. (1 - |Tz|2)
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This last term is finite by Theorem 3 of [7] and the fact F e H(p, Y), if Y

acts freely on U. If the origin is not a fixed point of Y, then the proof of

Theorem 3 of [7] goes through without modification to yield the desired

result. If the origin is a fixed point of Y, then, by conjugation, one can

return to the previous case and again the result follows. This completes

the proof of the lemma.

Proposition 4.   Suppose F(z)=2"=o anzn e H(p, Y) (1 <p< oo). Then

(1.3) is finite ifs=\ and r>0; thus an = 0(nx+t) as «—»-co.

Proof.

|Y|F| (1 - \z\2ydx dy = ff|F| (1 - \z\2y-^)lv(\ - \z\2)i-{i-x)"'dx dy

ffifl»(i-,*,y-»¿xáyr

-D/p

(1 - |z|2),B/(,-I,-1£/xdj>| < 00,

u u

<

JJ<
by Holder's inequality, Lemma 3, and the fact i>0. The conclusion that

an = 0(n1+t) as n—>-oo now follows from Theorem 4 of [3].

Remark.    J. Lehner (private communication) has shown that if

FeH(p, Y)    (1 < p < oo),       then an = 0(n).

4. Summability results. From Proposition 4 we saw that an=0(n1+t)

for all i>0 if 2™=o On2" G H(p, Y). However even more is true if we assume

2^/7< oo for arbitrary Y or 1 <p< oo and Y a finitely generated group. We

note that if Y is finitely generated then Y is of convergence type if and only

if r is of the second kind. We first prove

Lemma 5.    If Y is finitely generated of the second kind then,for 1 <p< oo,

(4.1) iï(21-lTzlï),'Mz)<00-

a

The idea of proof is that if one chooses Ü. to be a Dirichlet region, then,

dilC\dU consists of free sides and parabolic cusps. On the free sides

!ÍTtr\T'(z)\ has a bounded supremum and so we must integrate

(1 —|z|2)p_2 dx dy which is finite. As for the parabolic cusps we need only

recall that the hyperbolic area of a parabolic cusp is finite (cf. [4] for the

details). Since ||-|| „ is independent of the choice made for the fundamental

region the result follows.
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Theorem 6.    Suppose F(z)= 2™=0 anzn. Then {ajn} e l2 if either

(i) F e H(2, Y) or

(ii) F e H(p, Y) (1 <p< oo) and Y is finitely generated.

Proof. In view of Parseval's formula for functions holomorphic in U

it suffices to show that (1.3) is finite with s=2 and t=\. Lemma 3 im-

mediately yields the result in case (i). If Y is finitely generated, then, for

l<p<q£<X),

(4.2) Hip, Y) g H(q, Y).

Assuming this for the moment, we see immediately that the theorem is true

for l</>^2 in case (ii). Ifp>2, then

ij\F\2(l - |z|2) dx dy = jjW1!2 (1 - M2) dco(z)

a u

= \\\FX-'\22(l-\TA2)dco(z)
JJ Ter

*(ti

Ter

2/i>

[FX-y dco(z)\

})/(u-2) \(j)-2)/p

x (^(Sü-irzi^'^z)

< oo,

by Lemma 5 and the fact F g H(p, Y) with p>2. Thus the proof will be

complete once (4.2) is established. This shall be done in §5.

In case Y is infinitely generated of convergence type and F g H(p, Y)

(/?5¿2), similar methods to those above yield

Proposition 7. If Y is of convergence type andF(z) = 2£L„ anzn e H(p, Y),

then

(i) K,«-'} G It for allr>\if2<p<co,

(ii) {ann-<p+2»2p} el2if\ <p<2.

The idea of the proof is to show that (1.3) is finite if s=2 and i>l in

case (i) and s=2 and t=2\p in case (ii). Then using the fact ß(p,q) =

Y(p)Y(q)lY(p+q) and Y(x)IY(x+a)~x-" the result follows by Parseval's

formula.

5. An auxiliary result. In the proof of Theorem 6 we merely asserted

(4.2). To prove this assertion we need to introduce the following notation

analogous to that of [5]. Given z, £ g U, we define

k(z, o = 7T-\\ - zly
•2
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and

a(z, 0 = 0(fc(z, 0, r)

= 2 fe(Tz, QT'(z).
Ter

It is known (cf. [7, Theorem 1]) that (every arrangement of) the series

defining a(z, Ç) converges, for fixed £ in U, uniformly on compact subsets

of U. Moreover since k(z, £) is a bounded analytic function for each £ in

U it follows that a(z, £) e H(p, Y) (1 </?^oo) whenever Y is finitely gen-

erated. Also we have

Proposition 8.    Suppose Y is finitely generated of the second kind and

FeH(p,Y)(\<p<oo). Then

(5.1) JÏF(z)a(z, 0 dx dy = F(£).

n

Proof.   Formally we have

f|V(z)a(z, 0 dx dy = |Tf(z) £ k(Tz, Ç) r(z) dx dy

íí íi

= jYF(z)/c(z,Ddxdy = F(£).

To complete the proof it suffices to show that

I = [[\F(z)\\k(z,Ü)\dxdy< co.

u

This follows immediately from the fact that k(z, £) is a bounded analytic

function of z for each £ in Í7 and hence

/ ú \\k(z, oil (JV(z)i 2 iT'(z)i ¿* ̂

= \\k(z,l)\\„[[\F(z)X-\z)\ (2(1 - |Tz|2)) dco(z).

°

Now Holder's inequality, (4.1) and the fact that FeH(p, Y) yields the

desired result.

Note 1.    If T is finitely generated of the second kind then an analogous
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argument to that in [6] yields

(5.2) 0 ̂  «(£, 0 = JJWz, £)|2 ¿x dy ̂  C(l - |£|2)-2,

SI

(5.3) |a(z, 01 ^ C(l - |z|V(i - la2)"1-

Note 2. If one developed an Lv theory for automorphic forms of

dimension — 2q, q an arbitrary real (^> 1), as in Drasin [2], then the above

proposition has an analogous statement (viz. Theorem 3 of [2]).

We can now show

Proposition 9. If Y is finitely generated of the second kind then

Hip,Y)^iHiq,Y)) (1</>^7<co).

Proof.   We first note that it suffices to show

(5.4) Hip, Y) ç //(go, T),        1 < p < oo,

for then, if q>p, it follows that

filF;.-1!" dcoiz) = iï\FÀ-1\v-' |FA_1P dcoiz)

si n

^ UFP"» IIFIi; < oo.Jl

To see that (5.4) holds we first assume that l</?<2. Then by (5.1) we

have for F g Hip, Y) and \¡p+ \\p = 1

|F(DI = JYf(z)oc(z, 0 dx dy

a

A\    I IllotCz. Of X~p' dœ(z)\(tt\FX-rdœiz)\  7jJW>

■■(ÍK
Q

= \\F\U    I Hz, 0f~* Hz, Of ¿-*'+2 dx dy'"'

<: \\F\\vC2-a/p,)il - |£|2)-«»'-2>/*'>(i _ \tfyv*'

= \\F\\pc2-a/»Xi-\!;\2)-1

by Holder's inequality (5.2) and (5.3). This completes the proof in case

\<p<2.
Now we note that an analogous argument based upon a similar re-

producing formula for /»-integrable holomorphic automorphic forms G of

dimension —2q<—2 (cf. Drasin [2]) would show that such forms are
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bounded if l<p^2, i.e.,

sup|G(z)|(l-|z|2)a< oo.
zeU

Hence, we letp>2 and F e H(p, Y), and choose an integer m such that

m<.p^m + i. It follows immediately that Fm(z) is ap/m integrable form of

dimension — 2«? and since l<.p/m^2 the remark above yields that

|Fm(z)|(l-|z|2)m^C for all z in U, i.e.

sup |F(z)| (1 - |z|2) ^ Cllm < oo.
zejj

This completes the proof.

Remark 1. We note that it is easy to see that if one used an arbitrary

system of factors of automorphy {p(z, T):TeY} instead of T'(z) then the

statements and results of all of the above theorems go through exactly as is.
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