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ON THE GROWTH OF THE TAYLOR COEFFICIENTS
OF AUTOMORPHIC FORMS

THOMAS A. METZGER!

ABSTRACT. The growth of the Taylor coefficients of an auto-
morphic form of dimension —2 with respect to a Fuchsian group T’
is related to the area integral j' j' v |FI*(1—|z|®)! dx dy, and it is found
that these coefficients must grow faster than a power of n. Moreover
if FE H(p, T') then these coefficients must grow slower than a
different power of n and, in fact, a,/n is square summable if either
p=2or 1<p<co and T is finitely generated of the second kind.

1. Introduction. Throughout I' shall stand for a Fuchsian group
acting on the unit disk U(={z:|z|<1}) of the complex plane. We shall
assume that I' is of convergence type, i.e.,

(1.1 DIT'(z)l < o forall zin U.
Ter

We note that (1.1) is equivalent to the fact that the associated Riemann
surface U/T" is hyperbolic (cf. Tsuji [9, p. 522]). If F is a function defined on
U, then we say that F is an automorphic form of degree —2 if

F(T2)T'(z) = F(z) forall TinT and zin U.
We define

(1.2) Az = (1 — |z]?), dw(z) = A%(z) dx dy,

and note that A-1(T2)=|T'(z)|A~*(z) and dw(Tz)=dw(z) for all conformal
automorphisms 7 of U onto itself. If Q is a fundamental region for I'
whose boundary has two dimensional measure zero, then we define
H(p,T) (1=p< o) to be the space of holomorphic automorphic forms of
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degree —2 with respect to I' such that | F||,< co where
IFI3 = f f IFG)I 377(2) dox(2).
Q

We note that H(1, I')={0} for a large class of groups I (cf. [5, Theorem
3]). H(oo,T') is defined to be the space of holomorphic automorphic
forms of degree —2 with respect to I' with the norm

IFlle = sup IF(2)] 27'(2) < co.

In this paper we shall obtain estimates on the growth of the Maclaurin
coefficients of holomorphic automorphic forms of dimension —2 by
relating such growth to the finiteness of integrals of the form (cf. [3])

(1.3) flel*(l — |z|»t dx dy.
U

Although all of our work is done for the case I' of convergence type and
automorphic forms of dimension —2, analogous results could be stated and
proved for arbitrary I' and automorphic forms of dimension —2¢<—2.

2. Lower limits on the order of growth of the coefficients. We shall first
show that the Maclaurin coefficients of an automorphic form cannot grow
“too’” slowly.

THEOREM 1.  Suppose I is such that 3 per | T’ (2)|7= o0 for some z in U.
Let F(z2)=3a,2", F#O0, be an arbitrary (holomorphic) automorphic
form of degree —2 with respect to U, then, for any t<r[2, a,#0(n').

Note. If 3 per |T'(2)]=100 for one z in U then > g | T (¢)["= o0 for all
zin U.

PrROOF. Suppose a,=O0(nf), then >3, (la,|*/(n+1)**")<oco. Since
I'x)/T'(x+a)~x—1, it follows that
2 |a,|*T(r + DI'(n + 1)
n=0 F(n +r+ 2)

this in turn implies, since 8(p, ¢)=T'(p)I'(¢)/T'(p+9),

™M

’

0, 1
Z |a,,|2f (1 — uyu™du < .
0

n=0

Now upon letting u=p?, where |z|=p, we sece that Pareseval’s formula
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implies that

(=) 1
[iera = iy axay = 5 o, [a-mrendp <.
n=0 0
U
But this cannot happen if F#0 for

Ter

o >f f FIP(1— |z dxdy = f FIE(L = |2 dx dy
TQ

U
= [[irea — 1=y ST axay,
Ter
Q
since |F|2 dx dy is T" invariant. Since D per |T'(2)|"= co we have arrived at
a contradiction and the proof of the theorem is complete.

COROLLARY 2. Suppose F is as above and I is not cyclic hyperbolic, then
a,#0(1).

Proor. If T' is not cyclic hyperbolic, then Beardon [1] proved that
there exists an r>0 such that 3 per |7'(¢)]"=c0; hence choosing t=0 in
Theorem 1 completes the proof.

RemArk. If T' is cyclic hyperbolic, Beardon [1, p. 475] showed that
Srer |T'(®)|"< oo for all r>0, however in this case we have a,#0(n™®)
for all £>0.

3. Upper limits on the growth of the coefficients. We note that in the
above theorem and its corollary no assumption was made about the growth
of F. If we make such an assumption, i.e., F€ H(p, I'), then it can be
shown that the Maclaurin coefficients of F cannot grow “‘too”’ fast. In order
to prove this we first need

LemMmA 3. Let Fe H(p, ') (1= p< ). Then (1.3) is finite with s=p and
t=p—1.

PROOF.

f f IFIP(1 = |27 dx dy = f f IFA7P (1 — [2]%) deo(2)

U

Ter

U
=H [FA7P S (1 — IT2%) de(2)
Q

s[swSa- 7=t ] Wi

U Ter
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This last term is finite by Theorem 3 of [7] and the fact Fe H(p, I), if '
acts freely on U. If the origin is not a fixed point of I', then the proof of
Theorem 3 of [7] goes through without modification to yield the desired
result. If the origin is a fixed point of I', then, by conjugation, one can
return to the previous case and again the result follows. This completes
the proof of the lemma.

PROPOSITION 4. Suppose F(z)=2 o a,z" € H(p, ") (1<p<o0). Then
(1.3) is finite if s=1 and t>0; thus a,=O0(n'*") as n—co.

PROOF.

[ = 12y dx ay = [ [1F1t = iz — ey ax ay
U U

< ( f f IFIP (1 — 2" dx dy)w.
U

— 2¢p/(p—1)—1 (p—1)/p
(L =1zl dxdy < o,

U

by Hoélder’s inequality, Lemma 3, and the fact £>0. The conclusion that
a,=0(n'*t) as n—oo now follows from Theorem 4 of [3].
REMARK. J. Lehner (private communication) has shown that if

FeH(pp,T) (1=p< ), then a, = O(n).

4. Summability results. From Proposition 4 we saw that a,=0(n'*")
forall t>0if >4 a,z" € H(p, I'). However even more is true if we assume
2= p< oo for arbitrary I" or 1< p< o0 and I' a finitely generated group. We
note that if I is finitely generated then I is of convergence type if and only
if I is of the second kind. We first prove

LemMA 5. If T is finitely generated of the second kind then, for 1 <p< o,

(.1 f f (21 - szlz)p do(z) < .
Q

Ter

The idea of proof s that if one chooses €2 to be a Dirichlet region, then,
0QNOU consists of free sides and parabolic cusps. On the free sides
>rer IT'(z)] has a bounded supremum and so we must integrate
(1—1z|?)*=2 dx dy which is finite. As for the parabolic cusps we need only
recall that the hyperbolic area of a parabolic cusp is finite (cf. [4] for the
details). Since |||, is independent of the choice made for the fundamental
region the result follows.
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THEOREM 6. Suppose F(z)=2_o a,z". Then {a,[n} € I, if either

() FeHQ2,T) or

(i) Fe H(p, ") (1<p< ) and T is finitely generated.

Proor. In view of Parseval’s formula for functions holomorphic in U
it suffices to show that (1.3) is finite with s=2 and r=1. Lemma 3 im-
mediately yields the result in case (i). If I is finitely generated, then, for
I<p=g=o,
“4.2) H(p,T) < H(g, ).

Assuming this for the moment, we see immediately that the theorem is true
for 1< p=2 in case (ii). If p>2, then

ilelz(l — |z|>) dx dy =ff|F1-l|2 (1 = |z|?) de(z)

U
=H|F/1-1|2Z(1 — |Tz|*) do(z)
Q

Ter

—1|p 2/p
< ( i f FAY dw(z))
(ff (z'Ee:r(l —ITz |2))M(p_2)dw(z))(”_2)/p
Q

by Lemma 5 and the fact F e H(p, I') with p>2. Thus the proof will be
complete once (4.2) is established. This shall be done in §5.

In case I is infinitely generated of convergence type and Fe H(p, I')
(p#2), similar methods to those above yield

X
< o,

PropPoSITION 7.  If T'is of convergence type and F(z)=2 > ya,z"€H(p,I),
then
) {anryel, forallr>1if2<p< o,
(ii) {an 9/} € , if 1< p=2.

The idea of the proof is to show that (1.3) is finite if s=2 and t>1 in
case (i) and s=2 and r=2/p in case (ii). Then using the fact B(p,q)=
T'(p)I'(g)/T'(p+4) and I'(x)/T'(x+a)~x—2 the result follows by Parseval’s
formula.

5. An auxiliary result. In the proof of Theorem 6 we merely asserted
(4.2). To prove this assertion we need to introduce the following notation
analogous to that of [S]. Given z, { € U, we define

k(z, ) = =71 — 20)™*
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and
“(z’ C) = o(k(z3 09 F)
=> KTz, )T'(2).

Ter

It is known (cf. [7, Theorem 1]) that (every arrangement of) the series
defining a(z, {) converges, for fixed { in U, uniformly on compact subsets
of U. Moreover since k(z, {) is a bounded analytic function for each { in
U it follows that a(z, {) € H(p, I') (1< p=o0) whenever I is finitely gen-
erated. Also we have

PrOPOSITION 8. Suppose T is finitely generated of the second kind and
FeH(p,T) (1<p< ). Then

¢.1) F(2)(z, {) dx dy = F(J).
[

Proor. Formally we have

Ter

f f F(2)x(z, 0) dx dy = f f FG) > KTz ) T'G) dx dy
Q Q
= [[FereD axdy = F
U
To complete the proof it suffices to show that
I = |||F(2)| [k(z, {)| dx dy < .
JJ

This follows immediately from the fact that k(z, {) is a bounded analytic
function of z for each { in U and hence

15 1k Ol f f IF@)I S I T'()| dx dy
Q

= Ik(z. Ol [[ 1P (3 a =172 dota.
2

Now Hélder’s inequality, (4.1) and the fact that Fe H(p, I') yields the
desired result.
Note 1. If T is finitely generated of the second kind then an analogous
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argument to that in [6] yields
5.2) 0=u«{ ) =ffla(z, OlPdxdy = C(1 — [¢)77

Q
(5:3) la(z, DI = C(1 — 213711 — [EH™

Note 2. If one developed an L, theory for automorphic forms of
dimension —2¢, ¢ an arbitrary real (¢>1), as in Drasin [2], then the above
proposition has an analogous statement (viz. Theorem 3 of [2]).

We can now show

ProposiTION 9. If T' is finitely generated of the second kind then
H(p, T)< (H(g, T)) (1<p=g=0).

Proor. We first note that it suffices to show
(.4) H(p,T) < H(eo,T), 1<p< oo,
for then, if ¢>p, it follows that

[llel‘lI“ dw(z) =ff|Fl‘1|°‘” [FA7Y? do(z)

S IFIS? IFI5 < oo.

To see that (5.4) holds we first assume that 1<p=2. Then by (5.1) we
have for Fe H(p,I') and 1/p+1/p'=1

[FOI =

[!F(z)a(z, O dxdy

= (£ P2 dw(z})l/”( fn oz, DI dw(z))”’

1/p’
= IIFII,,( f Iz, D7 |alz, DI 17+ dx dy)
Q

< IIFll, C920(1 — (L)~ =201 — {17
= IFll, ¢~ — 12~
by Holder’s inequality (5.2) and (5.3). This completes the proof in case
I<p=2.
Now we note that an analogous argument based upon a similar re-

producing formula for p-integrable holomorphic automorphic forms G of
dimension —2¢< —2 (cf. Drasin [2]) would show that such forms are
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bounded if 1<p=2,i.e.,
sup |G(2)| (1 — |z|%)* < co.
zeU

Hence, we let p>2 and F € H(p, I'), and choose an integer m such that
m<p=m+1. It follows immediately that F™(z) is a p/m integrable form of
dimension —2m and since 1<p/m=2 the remark above yields that
|F™(2)|(1—|z]®)®<C for all zin U, i.e.

sup [F(2)| (1 — |z|*) £ CV™ < 0.
zeU

This completes the proof.

REMARK 1. We note that it is easy to see that if one used an arbitrary
system of factors of automorphy {p(z, T): T € T'} instead of T'(z) then the
statements and results of all of the above theorems go through exactly as is.
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