ADDITIONS AND CORRECTIONS TO "ON THE IDEAL STRUCTURE OF THE ALGEBRA OF RADIAL FUNCTIONS"

ALAN L. SCHWARTZ

ABSTRACT. The corrections and additions are made in the context of Hankel transforms which generalize the Fourier transforms of radial functions. The following question is studied: given two closed ideals I_1 and I_2 in the algebra of Hankel transforms such that both have the same spectrum and $I_1 \subseteq I_2$, when is there a closed ideal I such that $I_1 \subseteq I \subseteq I_2$?

1. Introduction. Professor Aharon Atzmon has been kind enough to point out a counterexample to the theorem in the paper mentioned in the title. That theorem was to have been an analogue for radial functions to the following theorem of Helson [2] which is stated here for the algebra L of integrable functions on \mathbb{R}^n (see also [3, p. 183]).

THEOREM. Suppose $I_1 \subseteq I_2$ (\subseteq denotes proper inclusion) where I_1 and I_2 are close ideals of L such that

$$\{ y \mid \hat{f}(y) = 0 \text{ for every } f \in I_1 \} = \{ y \mid \hat{f}(y) = 0 \text{ for every } f \in I_2 \};$$

then there is another closed ideal I of L such that $I_1 \subseteq I \subseteq I_2$.

In this paper, we give the counterexample cited by Atzmon and a new theorem. The discussion will be carried out in the language of Hankel transforms; see [8, pp. 236–237] for definitions and notation.

When n is a natural number and $\nu = (n - 2)/2$, A_ν is isometrically isomorphic to the algebra L_ν of radial integrable functions on \mathbb{R}^n with the usual convolution. Indeed, it consists, essentially, of the restrictions of the members of L_ν to a ray starting at the origin; and in fact, the Hankel transforms of the functions in A_ν are exactly the restrictions to such a ray of the Fourier transforms of the functions in L_ν.

Received by the editors October 27, 1971.

AMS (MOS) subject classifications (1970). Primary 42A92, 43A45; Secondary 44A15, 42A96, 43A70, 43A90.

Key words and phrases. Convolution algebra, Fourier transform, Hankel transform, ideal structure, radial functions, zero-sets, spectrum.

1 Work on this paper was done partly under grant #71-2047 from the Air Force Office of Scientific Research.

© American Mathematical Society 1973

288
In the balance of the paper we assume v is an arbitrary but fixed real number no smaller than $-\frac{1}{2}$. We let k be the greatest integer not exceeding $v+\frac{1}{2}$. If I is a closed ideal in A_v we set $I = \{ f^t | f \in I \}$ and we say f^t belongs to I locally at y if y has a neighborhood in $[0, \infty)$ on which f^t agrees with a member of I. (The term neighborhood will always refer to a bounded subset of $[0, \infty)$ open in the usual topology.)

The functions in A_v all have k continuous derivatives on $(0, \infty)$ (see [6] or [9]) and the functionals $f \mapsto f^{(i)}(y)$ are all continuous for $0 \leq j \leq k$ and $y > 0$. For $f \in A_v$ define

$$Z^{(i)}(f) = \{ y \mid f^{(i)}(y) = \cdots = f^{(j)}(y) = 0 \}$$

and if I is an ideal, let

$$Z^{(i)}(I) = \bigcap_{f \in I} Z^{(i)}(f).$$

Since $f^{(i)}$ are continuous for $f \in A_v$, all of these sets are closed. We write $Z(I) = Z^{(0)}(I)$ and $Z(f) = Z^{(0)}(f)$, and call $Z(I)$ the spectrum of I. If E is closed, the collection of all closed ideals with spectrum E will be called $J(E)$. $I_0(E)$ will denote the smallest closed ideal containing all functions f such that E is interior to $Z(f)$. If E is closed and $j = 0, 1, \cdots, k$, we define the closed ideals

$$I^{(j)}(E) = \{ f \mid f^{(i)}(y) = \cdots = f^{(j)}(y) = 0 \text{ all } y \in E \};$$

we write $I(E)$ for $I^{(0)}(E)$; $I(E)$ is the largest ideal in $J(E)$.

2. The counterexample. Let E consist of a single positive real number y. Since the infinitely differentiable functions with compact support in $[0, \infty)$ are dense in $(A_v)^*$, it follows that the ideals

$$I(E) = I^{(0)}(E) \supseteq I^{(1)}(E) \supseteq \cdots \supseteq I^{(k)}(E)$$

are all distinct. It follows from [9, Lemma IV] that these are the only ideals of A_v with spectrum E. Thus at least in the case $v \geq \frac{1}{2}$ when E consists of a single positive real number the theorem of [7] is false.

In the balance of the paper, we will investigate the ideal structure of A_v in an attempt to discover when the structure is discrete; i.e., when there are pairs of distinct closed ideals between which no closed ideals can be found.

3. Additional definitions and notation. If E is a closed subset of $[0, \infty)$ then we say that E has relative approximate identities if whenever $f \in A_v$ and $E \subseteq Z^{(k)}(f)$ there is a sequence of functions $\{ v_n \}$ such that E is interior to $Z(v_n)$ and $\| v_n \ast f - f \| \to 0$ as $n \to \infty$. $\{ v_n \}$ is called an approximate identity for f relative to E.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
If \(E \) is any subset of \([0, \infty)\), \(\mathcal{C}E \) is its closure, and \(E' \), called the derived set of \(E \), is the set of limit points of \(E \).

We say a partially ordered set \(P \) has a discrete structure if given any \(x \in P \), there is a countable or finite subset \(B(x) \) such that

(a) if \(z \in P \) and \(z > x \) (\(z < x \)), then there is \(y \in B(x) \) such that \(z \geq y > x \) (\(z \leq y < x \));

(b) if \(y \in B(x) \) and \(y > x \) (\(y < x \)) there is no \(z \in P \) such that \(y > z > x \) (\(y < z < x \)).

Two partially ordered sets are isomorphic if there is an order-preserving bijection between them. If \(E \) is any subset of \([0, \infty)\), let \(\mathcal{W}(E) \) consist of all functions \(\phi \) such that \(\phi: E \to \{0, 1, \ldots, k\} \) and \(\phi(0) = 0 \) if \(0 \in E \). We define \(\mathcal{I}(\phi) \) to be the collection of all \(f \in A_v \), such that

\[
\hat{f}(x) = \hat{f}^{(0)}(x) = \hat{f}(x) = \cdots = \hat{f}^{(\phi(x))}(x) = 0
\]

for every \(x \in E \). It is easy to see that \(\mathcal{I}(\phi) \subseteq \mathcal{I}(E) \). If \(\phi \) and \(\psi \) are in \(\mathcal{W}(E) \), we say that \(\phi \geq \psi \) if \(\phi(x) \leq \psi(x) \) for every \(x \in E \); if this is the case, it follows that \(\mathcal{I}(\phi) \supseteq \mathcal{I}(\psi) \); \(\mathcal{W}(E) \) is obviously discrete under this ordering whenever \(E \) is countable or finite.

Remark. The relative approximate identity is generally a weaker notion than that of approximate identity: a closed set \(E \) has an approximate identity if there is a sequence of functions \(\{v_n\} \) such that \(E \) is interior to \(Z(v_n) \) for \(n = 1, 2, \ldots \) and such that, if \(f \in \mathcal{I}(E) \), then \(\|f * v_n - f\| \to 0 \) as \(n \to \infty \) (cf. [3, pp. 48-51]). The existence of an approximate identity implies that \(\mathcal{I}(E) = I_0(E) \) so that \(\mathcal{S}(E) \) consists of exactly one ideal. The question of whether the converse of this is true is still open.

4. **Main result.** We are now in a position to state a theorem which gives some description of the ideal structure of \(A_v \).

Theorem. Let \(E \) be a closed subset of \([0, \infty)\), let \(E' \) be the derived set of \(E \), and let \(F \) be the set of isolated points of \(E \). Suppose \(E' \) has relative approximate identities. Then the mapping \(\phi \mapsto K(\phi) = I(\phi) \cap \mathcal{I}(E) \) is an isomorphism between \(\mathcal{W}(F) \) and \(\mathcal{S}(E) \), and so \(\mathcal{S}(E) \) is discrete.

The proof of the theorem will be given in §6. We note that there exists a sequence \(\{k_n\} \) of functions such that \(\|k_n * f - f\| \to 0 \) for every \(f \in A_v \), so the hypotheses above hold when \(E' \) is empty and we have the

Corollary. If \(E \) is a discrete subset of \([0, \infty)\) then \(\mathcal{S}(E) \) is isomorphic to \(\mathcal{W}(E) \), and so \(\mathcal{S}(E) \) is discrete.

5. **Lemmas.** The following lemmas describe the ideal structure of \(A_v \) and contain results which will be useful in proving the theorem.
Lemma 1. Suppose \(\hat{f}(0) = 0 \); then there is a sequence of functions \(\{v_n\} \) such that \(\hat{v}_n = 0 \) on a neighborhood of 0 and such that \(\|\hat{f} \ast v_n - \hat{f}\| \to 0 \).

This is Lemma 3.4.17 of [5], which is adapted from [3, pp. 48–51].

Lemma 2. If \(y_0 > 0 \), \(\mathcal{F}(y_0) \) consists of the \(k + 1 \) distinct ideals \(I^{(0)}(y_0), \ldots, I^{(k)}(y_0) \); in particular \(I_0(y_0) = I^{(k)}(y_0) \).

The lemma is proved easily with the use of Lemma IV of [9] and Lemma 4 of [7].

Lemma 3. (a) If \(f \in A_\nu \) and \(f \) does not vanish on some compact subset \(K \) of \([0, \infty) \), then there is \(g \in A_\nu \) such that \(\hat{g}f = 1 \) on \(K \).

(b) If \(f \) and \(g \) are in \(A_\nu \) and \(Z(g) \) is interior to \(Z(f) \), then, if \(f \) has compact support, \(f = g \ast h \) for some \(h \in A_\nu \).

The lemma is easily proved using the techniques of [1, pp. 119–130].

Lemma 4. If \(I \) is a closed ideal of \(A_\nu \) and \(f \in A_\nu \) and if \(f \) is in \(\hat{I} \) locally at each point of \([0, \infty) \), then \(f \in I \).

This can be proved by using the technique of [3, Lemma 6.2.6].

Lemma 5. If \(f \in A_\nu \) and \(I \) is a closed ideal of \(A_\nu \), then \(f \in \hat{I} \) locally at \(y_0 \) if either of the following two conditions hold:

(i) \(y_0 \notin Z(I) \).

(ii) \(y_0 \) is an interior point of \(Z(f) \).

Proof. (a) If \(y_0 \notin Z(I) \), then there is \(g \in I \) such that \(\hat{g}(y_0) \neq 0 \). The continuity of \(g \) and Lemma 3 ensure the existence of a function \(h \in A_\nu \) such that \(\hat{h}g = 1 \) on a neighborhood \(U \) of \(y_0 \). Then \(f \) coincides with \(f \hat{h}g \) in \(U \) and the latter function is the transform of \((f \ast h) \ast g \) which is in \(I \), so \(f \) is in \(I \) locally at \(y_0 \).

(b) follows since \(I \) contains the constant zero function.

Lemma 6. If \(I \) is a closed ideal of \(A_\nu \), \(f \in A_\nu \) and \(Z(I) \subseteq Z^{(k)}(f) \), then the set

\[C = \{y \mid \mathcal{F}f \text{ is not in } \hat{I} \text{ locally at } y\} \]

is closed, and if the derived set of \(Z(f) \) has relative approximate identities, then \(C \) has no isolated points; thus \(C \) is either empty or perfect.

Proof. The complement of \(C \) is open, so \(C \) is closed. Suppose by way of contradiction that \(y_0 \) is an isolated point of \(C \). Let \(W \) be a neighborhood of \(y_0 \) which contains no other point of \(C \) and let \(h \in A_\nu \), be such that \(\hat{h} = 1 \) on a neighborhood of \(y_0 \) and \(\hat{h} = 0 \) off of a compact subset contained in \(W \). Since \(y_0 \in C \), then \(y_0 \in Z(I) \) by Lemma 5, so \(y_0 \in Z^{(k)}(f) \). We treat two cases depending on whether or not \(y_0 \) is an isolated point of \(Z(f) \).
Suppose \(y_0 \) is a limit point of \(Z(f) \); a repeated application of Rolle's theorem shows that the derived set of \(Z(f) \) is contained in \(Z^{(k)}(f) \). Let \(\{v_n\} \) be an approximate identity for \(f \) relative to the derived set of \(Z(f) \); then \(v_n \) vanishes in a neighborhood of \(y_0 \). We claim \(f_n = v_n \ast h \ast f \) belongs to \(\mathcal{I} \) locally at every point of \([0, \infty)\). To see this, note \(y_0 \) is interior to \(Z(v_n) \) and if \(y \notin W \), \(y \) is interior to \(Z(h) \) so if \(y \notin W \) or \(y = y_0 \), \(y \) is interior to \(Z(f_n) \), and, by Lemma 5, \(f_n \) belongs to \(\mathcal{I} \) locally at \(y \). By assumption, \(f \) belongs to \(\mathcal{I} \) locally at every point of \(W - \{y_0\} \), hence so does \(f_n \). Thus \(f_n \) belongs to \(\mathcal{I} \) locally at every point of \([0, \infty)\), so \(f_n \in \mathcal{I} \) by Lemma 4. Since \(v_n \ast f \rightarrow f \), \(f_n \rightarrow h \cdot f \), and since \(\mathcal{I} \) is closed, \(h \cdot f \in \mathcal{I} \). But \(h \cdot f = f \) on a neighborhood of \(y_0 \), so \(f \) belongs to \(\mathcal{I} \) locally at \(y_0 \), whence \(y_0 \notin C \) which is a contradiction.

Suppose now that \(y_0 \) is an isolated point of \(Z(f) \). If \(y_0 = 0 \) we use Lemma 1 and proceed as above. If \(y_0 > 0 \), let \(W \) and \(h \) be chosen as above to satisfy the additional condition that \(\partial W \cap Z(f) = \{y_0\} \). It is an easy matter to construct a function \(g \) such that \(\hat{g} = f \) on \(W \) and such that \(Z(g) = \{y_0\} \). Then the closed ideal generated by \(g \) must be \(I^{(k)}(y_0) \) by Lemma 2. Now, also by Lemma 2, \(I^{(k)}(\{y_0\}) = I_0(\{y_0\}) \) so we can find \(g_n \) such that \(y_0 \) is interior to \(Z(g_n) \), \(\hat{g}_n \) has compact support, and \(\|g_n - g\| \rightarrow 0 \). It follows from Lemma 3 that there are functions \(v_n \) such that \(g_n = v_n \ast g \). In particular, each \(\hat{v}_n \) vanishes on a neighborhood of \(y_0 \), and on \(W \), \(\hat{v}_n \hat{f} = \hat{v}_n \hat{g} \). We can now show, as in the first part of the proof, that \(f_n = h \hat{v}_n \hat{f} \) belongs to \(\mathcal{I} \) locally at every point \(y \) of \([0, \infty)\), so \(f_n \in \mathcal{I} \) and finally \(f_n \hat{h} \hat{v}_n = \hat{g} \hat{h} \hat{v}_n \) and \(\|g \ast v_n - g\| \) so \(g \ast h \in \mathcal{I} \) but \(\hat{g} \hat{h} = f \) on a neighborhood of \(y_0 \); thus \(f \) is in \(\mathcal{I} \) locally at \(y_0 \) which is a contradiction.

6. Proof of theorem. We first show that the mapping is injective. Suppose \(\phi \) and \(\psi \) are in \(\mathcal{W}(\mathcal{F}) \). If \(\phi \neq \psi \) then \(\phi(x) \neq \psi(x) \) for some \(x \in F ; x \neq 0 \), since if \(0 \in F \), \(\phi(0) = 0 = \psi(0) \). Let \(W \) be a neighborhood of \(x \) such that \(W \cap E = \{x\} \). Assume \(\phi(x) < \psi(x) \) and let \(g \) be a function with compact support and infinitely many derivatives such that

\[
g = 0 \quad \text{off } W,
\]

\[
g(x) = g'(x) = \cdots = g^{(\phi(x))}(x) = 0 \quad \text{and} \quad g^{(\psi(x))}(x) \neq 0.
\]

Then \(f = g \in A \), as can be seen by repeated integration by parts and, in fact \(f = g \) and \(f \in \mathcal{K}(\phi) \), but \(f \notin \mathcal{K}(\psi) \), so \(\mathcal{K}(\phi) \neq \mathcal{K}(\psi) \).

Now suppose \(f \in \mathcal{F}(E) \); we define \(\phi \) by setting \(\phi(0) = 0 \) if \(0 \in F \), and \(\phi(y) = \max\{j | y \in Z^{(j)}(I)\} \) if \(y \in F \) and \(y \neq 0 \). Then \(I \subseteq \mathcal{K}(\phi) \). Suppose \(f \in \mathcal{K}(\phi) \), then \(E \subseteq Z^{(k)}(f) \) \(\{v_n\} \) be an approximate identity for \(f \) relative to \(E' \).

We claim \(f \hat{v}_n \) is contained in \(\mathcal{I} \) locally at every point of \([0, \infty)\). There are three cases: (i) \(y \notin E \), (ii) \(y \in F \), (iii) \(y \in E' \). Case (i) is disposed of by
Lemma 5. To handle case (ii) let W be a neighborhood of y such that $W \cap E = \{y\}$, let $m = \max\{j \mid f \in I^{(j)}(\{y\})\}$; then there is $g \in I$ such that $Z(g) \cap W = \{y\}$, $g(y) = \cdots = g^{(m)}(y) = 0$, and, unless $m = k$, $g^{(m+1)}(y) \neq 0$; then $(I^{(m)}(\{y\}))^{\wedge}$ coincides on W with the closed ideal generated by g because of Lemma 2. But $f \ast v_n \in I^{(m)}(\{y\})$ so $f \ast v_n$ coincides with a function from I on W. Finally, if $y \in E'$, y is interior to $Z(v_n)$ so $f \ast v_n$ belongs to I locally at y. We have proved our claim so $f \ast v_n \in I$ by Lemma 4, but $\|f \ast v_n - f\| \to 0$ and I is closed, so $f \in I$, therefore $I = K(\phi)$.

That the mapping is order preserving is obvious, so the proof is complete.

7. Additional remarks and open questions. We recall that when n is a natural number and $v = (n - 2)$ the algebras L_r and A_r are isomorphic so our results give information about the ideal structure of L_r. Moreover to each ideal L_r corresponds a unique rotation invariant ideal of L (see [7, Lemma 4]), so we also get information about that class of ideals.

We conclude with some remarks and questions about the ideal structure of A_r and relative approximate identities.

1. The hypothesis in the theorem that E have approximate relative identities was chosen to assure that $I_0(E) = I^{(k)}(E)$. Is the converse true? In particular, if E consists of a single point $y_0 > 0$, does E have a relative approximate identity? (With appropriate change in the definition, the question can be asked when $y_0 = 0$. The answer to this is "yes" and can be found in [5, Theorem 3.3.2].) Might it be the case that there is a fixed sequence $\{v_n\}$ of functions in A_r such that y_0 is interior to $Z(v_n)$ and $\|v_n \ast f - f\| \to 0$ as $n \to \infty$ for every $f \in I^{(k)}(\{y_0\})$?

2. If $I_0(E) \neq I^{(k)}(E)$ must there be an ideal between them? Can the ideal structure be dense in the sense that, if $I_1 \subset I_2$ are distinct ideals in $I(E)$, then there is an ideal J such that $I_1 \subset J \subset I_2$, at least if $I_2 \subset I^{(k)}(E)$?

3. We observe that, if E is closed, then $E' \subset Z^{(k)}(I)$ for $I \in \mathcal{I}(E)$. What can be concluded about the structure of $\mathcal{I}(E)$ given the structure of $\mathcal{I}(E')$? If F is the set of isolated points of E then does the structure of $\mathcal{I}(E)$ above $I^{(k)}(E)$ become complicated if that between $I_0(E)$ and $I^{(k)}(E)$ does?

To be exact, we ask if the following sort of theorem might hold: "If $I \in \mathcal{I}(E)$ there is a unique $J \in \mathcal{I}(E')$ and $\phi \in W(F)$ such that $I = J \cap I(\phi)$."?

4. If $I^{(k)}(E) = I(E)$ does it follow that $I^{(k)}(E) = I_0(E)$? The converse is, of course, false by Lemma 2.

References

Department of Mathematics, University of Missouri, St. Louis, Missouri 63121