A metric characterizing Čech dimension zero
Author:
K. A. Broughan
Journal:
Proc. Amer. Math. Soc. 39 (1973), 437-440
MSC:
Primary 54F45; Secondary 54E35
DOI:
https://doi.org/10.1090/S0002-9939-1973-0314012-3
MathSciNet review:
0314012
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we prove the following: a metrizable space has (Čech) dimension zero if and only if there is a metric for
, generating the topology
, taking values in some subset of the nonnegative real numbers with 0 as its only cluster point.
- [1] J. de Groot, On a metric that characterizes dimension, Canadian J. Math. 9 (1957), 511–514. MR 90804, https://doi.org/10.4153/CJM-1957-059-6
- [2] Jun-iti Nagata, On a relation between dimension and metrization, Proc. Japan Acad. 32 (1956), 237–240. MR 86284
- [3] Jun-iti Nagata, Two theorems for the 𝑛-dimensionality of metric spaces, Compositio Math. 15 (1963), 227–237 (1963). MR 164320
- [4] Ludvík Janoš, A metric characterization of zero-dimensional spaces, Proc. Amer. Math. Soc. 31 (1972), 268–270. MR 288739, https://doi.org/10.1090/S0002-9939-1972-0288739-5
- [5] K. Broughan and M. Schroder, Variations on a metric theme, Report #14, Univ. of Waikato Research, 1972.
- [6] Kiiti Morita, Normal families and dimension theory for metric spaces, Math. Ann. 128 (1954), 350–362. MR 65906, https://doi.org/10.1007/BF01360142
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F45, 54E35
Retrieve articles in all journals with MSC: 54F45, 54E35
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1973-0314012-3
Keywords:
Metric spaces,
Čech dimension zero
Article copyright:
© Copyright 1973
American Mathematical Society