FAMILIES OF NEGATIVELY CURVED HERMITIAN MANIFOLDS
MICHAEL J. COWEN

Abstract. A complex analytic family of compact hermitian manifolds has negative holomorphic sectional curvature in a neighborhood of any fibre having negative holomorphic sectional curvature.

1. Introduction. In [1, Hilfssatz 4, p. 120], Grauert and Reckziegel state:

If \((Y, \pi, X)\) is an analytic family of compact Riemann surfaces of genus \(\geq 2\), over a Riemann surface \(X\), then for each point \(x_0\) in \(X\) there is a neighborhood \(V \subset X\) of \(x_0\) and a differential metric on \(Y|V\) such that \(Y|V\) is strongly negatively curved.

Their construction of the metric is clear, but the proof of strong negative curvature involves a computation which is not altogether complete. (The proof, however, can be completed easily using the formula for the Gaussian curvature of the sum of two hermitian metrics [1, Aussage 1, p. 111].) The purpose of this note is to give a simpler computation which shows that the metric actually has holomorphic sectional curvature \(\leq c < 0\) and hence a fortiori is strongly negatively curved [2, p. 39]. Indeed we will show that if the fibres of \(Y\) are \(n\)-dimensional compact manifolds each having holomorphic sectional curvature less than a negative constant, then \(Y|V\) has negative holomorphic sectional curvature.

2. Definitions and statement of results. Let \(ds^2\) be a hermitian metric on an \(n\)-dimensional complex manifold \(M\), with \(ds^2 = \sum g_{ij} \, dz_i \, d\bar{z}_j\) in local coordinates. Define the curvature tensor by

\[
K_{ijkm} = \frac{\partial^2 g_{ij}}{\partial z_k \partial \bar{z}_m} - \sum_{p,q} g_{ip} \frac{\partial g_{kj}}{\partial z_q} \frac{\partial g_{mq}}{\partial \bar{z}_j} \quad \text{for} \quad 1 \leq i, j, k, m \leq n.
\]

\(M\) has holomorphic sectional curvature (which will be denoted by h.s.c.) less than a constant \(c\) if \(- \sum k_{ijkm} s_i s_j s_k s_m < c\) for all holomorphic unit tangent vectors \(s = \sum s_i \partial / \partial z_i\).

Received by the editors June 5, 1972.

Key words and phrases. Holomorphic sectional curvature, hyperbolic manifold, analytic family, differential metric.
Theorem. Let \((Y, \pi, X)\) be an analytic family of compact complex \(n\)-dimensional manifolds over a Riemann surface \(X\), such that for each \(x_0 \in X\), the fibre \(Y_{x_0} = \pi^{-1}(x_0)\) has a hermitian metric of h.s.c. \(<c<0\), then there exists a neighborhood \(V\) of \(x_0\) in \(X\) such that \(Y|V\) has a hermitian metric of h.s.c. \(<c'<0\), with \(c, c'\) constants.

Remark. This generalizes Grauert and Reckziegel's result since a compact Riemann surface of genus \(\geq 2\) has a hermitian metric of Gaussian curvature (equals h.s.c. on a Riemann surface) less than a negative constant [2, Theorem 5.1, p. 12].

Corollary. If \(\sigma\) is a holomorphic section of \(Y\) with isolated singularities in \(X\), then \(\sigma\) extends as a holomorphic section to all of \(X\).

3. Construction of the metric. The construction is the obvious generalization of that in [1].

Since \((Y, \pi, X)\) is locally trivial we can find a neighborhood \(V\) with coordinate \(z_{n+1}\) centered at \(x_0\), and neighborhoods \(U_1, \ldots, U_r\) in \(Y\) such that \(Y|V = \bigcup U_m\), each \(U_m\) has coordinates \(z_1, \ldots, z_{n+1}\) with

\[
\pi(z_1, \ldots, z_{n+1}) = z_{n+1},
\]

and \(z_1, \ldots, z_n\) give coordinates in \(U_m \cap Y_{z_{n+1}}\) for all \(z_{n+1}\) in \(V\). The hermitian metric on \(Y_0 = Y_{x_0}\) is of the form \(\sum g_{ij}(z_1, \ldots, z_n) \, dz_i \, d\bar{z}_j\) on \(U_m \cap Y_0\) and thus can be extended to a pseudo-hermitian metric \(\sum h_{ij} \, dz_i \, d\bar{z}_j\) on \(U_m\), \(1 \leq i, j \leq n\), by setting \(h_{ij}(z_1, \ldots, z_{n+1}) = g_{ij}(z_1, \ldots, z_n)\). These pseudo-hermitian metrics can then be patched together by a partition of unity to give a pseudo-hermitian metric \(\alpha\) on \(Y|V\), such that \(\alpha|Y_0\) is the original hermitian metric on \(Y_0\). That is, \(\alpha = \sum k_{ij} \, dz_i \, d\bar{z}_j\) \((1 \leq i, j \leq n+1)\) on \(U_m\) and \(k_{ij}(z_1, \ldots, z_n, 0) = g_{ij}(z_1, \ldots, z_n)\) for \(1 \leq i, j \leq n\). Since \(\alpha|Y_0\) has h.s.c. \(<c<0\), it is clear that for \(z_{n+1}\) close enough to 0, \(\alpha|Y_{z_{n+1}}\) will have h.s.c. \(<c<0\). By shrinking \(V\) we can assume (1) \(V = (|z_{n+1}| < t)\), (2) \(\alpha|Y_{z_{n+1}}\) has h.s.c. \(<c<0\) for all \(z_{n+1} \in V\), and (3) \(k_{ij}\), its first, and second partial derivatives are bounded on each \(U_m\) for \(1 \leq i, j \leq n+1\). Since a disc in \(C\) has a hermitian metric of Gaussian curvature \(-1\), we can put \(V\) in a larger disc and obtain a metric \(h(z_{n+1}) \, dz_{n+1} \, d\bar{z}_{n+1}\) on \(V\) of Gaussian curvature \(-1\) such that \(h\), its first, and second partials are bounded on \(V\).

Define a metric \(ds^2\) on \(Y|V\) for each \(\lambda > 0\) by \(ds^2 = \alpha + \lambda h(z_{n+1}) \, dz_{n+1} \, d\bar{z}_{n+1}\), i.e. on \(U_m\), \(ds^2 = \sum k_{ij} \, dz_i \, d\bar{z}_j + \lambda h(z_{n+1}) \, dz_{n+1} \, d\bar{z}_{n+1}\). Note that for large \(\lambda\), \(ds^2\) has negative h.s.c. in both the fibre and base directions. We wish to choose \(\lambda_0\) so that for all \(\lambda \geq \lambda_0\), \(ds^2\) will have h.s.c. \(\leq c' < 0\). Clearly it suffices to do this on each \(U_m\) and then take the maximum of the \(\lambda_0\)'s so obtained.
4. Proof of negative sectional curvature. Assume we have shown the following:

(i) $K_{ijklm} \to \tilde{K}_{ijklm}$ for $1 \leq i, j, k, m \leq n$, uniformly on U_m as $\lambda \to \infty$, where $\tilde{K}_{ijklm}(z_1, \ldots, z_{n+1})$ is the curvature of ds^2 restricted to $Y_{n+1} \cap U_m$.

(ii) $|K_{ijklm}| \leq M$ on U_m for all $1 \leq i, j, k, m \leq n+1$ except when $i=j=k=m=n+1$, and M is a constant.

(iii) $K_{ijklm} = \lambda \left(\frac{\partial^2 h}{\partial z_{n+1} \partial z_{n+1}} - \frac{1}{h} \frac{\partial h}{\partial z_{n+1}} \frac{\partial h}{\partial z_{n+1}} \right) + O(1)$,

when $i=j=k=m=n+1$, where $O(1)$ means a term which is uniformly bounded on U_m.

Since the Gaussian curvature of h is

$$\frac{1}{h} \left(\frac{\partial^2 h}{\partial z_{n+1} \partial z_{n+1}} - \frac{1}{h} \frac{\partial h}{\partial z_{n+1}} \frac{\partial h}{\partial z_{n+1}} \right) \leq -1$$

and h is bounded on U_m, we have:

(iii)' $K_{ijklm} \leq \lambda c'$ when $i=j=k=m=n+1$, where $c'<0$ is a constant, for $\lambda \geq \lambda_0$.

Fix $z=(z_1, \ldots, z_{n+1})$. If $s=\sum_{i=1}^n s_i(\partial/\partial z_i)$ is a holomorphic unit tangent vector to the fibre Y_{n+1} then by (i) we have

$$-\sum K_{ijklm} s_i s_j s_k s_m \to -\sum \tilde{K}_{ijklm} s_i s_j s_k s_m < 0 \text{ as } \lambda \to \infty.$$

Hence by compactness of the unit sphere, we can choose λ_0 large enough so that for $\lambda \geq \lambda_0$ we have $-\sum K_{ijklm} s_i s_j s_k s_m < 0$ for s tangent to the fibre. But if $s=\sum_{i=1}^{n+1} s_i \partial/\partial z_i$ is any holomorphic unit tangent vector, then by (ii) and (iii)' we have:

$$-\sum K_{ijklm} s_i s_j s_k s_m \leq -\sum_{i,j,k,m=1}^n K_{ijklm} s_i s_j s_k s_m + M \sum |s_i| |s_j| |s_k| |s_m| + \lambda c' |s_{n+1}|^4,$$

where \sum is the sum of the terms where at least one, but not all, of the i, j, k, m equals $n+1$. Thus if s is not tangent to the fibre, i.e., $s_{n+1}\neq 0$, then by taking λ_0 large enough we can insure that the h.s.c. is less than c_s in a neighborhood of s on the unit sphere, for all $\lambda \geq \lambda_0$. But from (*) it is also clear that if s is tangent to the fibre, then the h.s.c. is less than c_s in a neighborhood of s for all $\lambda \geq \lambda_0$. Therefore for each fixed z the h.s.c. at z is less than c_s for $\lambda > \lambda_0$ and hence by the relative compactness of U_m, the h.s.c. $c<0$ on U_m for $\lambda \geq \lambda_0$, which proves the Theorem.

Let $ds^2|Y_{n+1} = \sum k_{ij} dz_i d\bar{z}_j$ be the metric restricted to the fibre, where $k_{ij}=k_{ji}$ for $1 \leq i, j \leq n$. Since

$$ds^2 = \sum k_{ij} dz_i d\bar{z}_j + \lambda h(z_{n+1}) dz_{n+1} d\bar{z}_{n+1} \equiv \sum g_{ij} dz_i d\bar{z}_j$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where $1 \leq i, j \leq n+1$, it is easy to check that:

(a) \(g^{ij} = \lambda^{-1} h(z_{n+1})^{-1} + O(\lambda^{-2}) \),

\(\frac{\partial g_{ip}}{\partial z_{n+1}} = O(1) + \frac{\partial h}{\partial z_{n+1}} \),

\(\frac{\partial^2 g_{ij}}{\partial z_{n+1} \partial z_{n+1}} = O(1) + \frac{\lambda}{\partial^2 z_{n+1} \partial z_{n+1}} \) for \(i = j = p = n + 1 \).

(b) \(g^{ij} = k^{ij} + O(1) + \frac{\partial h}{\partial z_{n+1}} \).

(c) \(g^{ij} = O(\lambda^{-1}) \),

\(\frac{\partial h}{\partial z_{n+1}} = O(1) \) otherwise. (Note. Since \(h \) is a function only of \(z_{n+1} \), terms such as \(\frac{\partial g_{ip}}{\partial z_k} \), for \(i = p = n + 1 \) but \(k \neq n + 1 \), do not involve \(\lambda \) or the derivatives of \(h \).)

If \(1 \leq i, j, k, m, p \leq n \) then

\[
K_{ijkm} = \frac{\partial^2 k_{ij}}{\partial z_k \partial z_m} - \sum_{p=1}^{n} \frac{\partial k_{ip}}{\partial z_k} (k^{pq} + O(\lambda^{-1})) \frac{\partial k_{qj}}{\partial z_k} + O(\lambda^{-1})
\]

which proves (i). If \(i = j = k = m = n + 1 \), then

\[
K_{ijkm} = \lambda \frac{\partial^2 h}{\partial z_{n+1} \partial z_{n+1}} + O(1) - \sum_{p=1}^{n} \frac{\partial g_{ip}}{\partial z_k} O(\lambda^{-1}) \frac{\partial g_{qj}}{\partial z_m} - \sum_{p=1}^{n} \frac{\partial g_{ip}}{\partial z_k} O(\lambda^{-1}) O(1) \frac{\partial g_{qj}}{\partial z_m} - (O(1) + \lambda \frac{\partial h}{\partial z_{n+1}})(\lambda^{-1} h^{-1} + O(\lambda^{-2})) (O(1) + \lambda (\frac{\partial h}{\partial z_{n+1}}))
\]

which proves (iii). The proof of (ii) is obvious, since the only terms which are not \(O(1) \) or \(O(\lambda^{-1}) \) are those appearing only when \(i = j = k = m = n + 1 \).

5. Proof of Corollary. Assume \(\sigma \) has an isolated singularity at \(x_0 \in H \).

By the Theorem, there is a neighborhood \(V = \{ |z| < 1 \} \) of \(x_0 \) such that \(Y \mid V \) has a metric of h.s.c. \(c < 0 \). Thus by [2, Theorem 4.11, p. 61], \(Y \mid V \) is hyperbolic and, by a theorem of Mrs. Kwack [2, Theorem 3.1, p. 83], \(\sigma: V \to Y \mid V \) has a holomorphic extension to \(\sigma': V \to Y \mid V \) if there exists a suitable sequence of points \(x_n \to x_0 \) such that \(\sigma(x_n) \to p_0 \in Y \mid V \). Since \(Y \mid V \) is relatively compact in \(Y \), the result follows.

6. Remarks. That \(X \) is a Riemann surface was not crucial to the proof of the Theorem and the proof goes through with obvious modifications when \(X \) is an arbitrary complex manifold. Then in the Corollary, \(\sigma \)
need only have singularities contained in an analytic set of codimension \(\geq 1 \) in \(X \), for \(\sigma \) to extend to all of \(X \). The proof of the Corollary then follows from a result of Mrs. Kwack [2, Theorem 4.1, p. 86].

References

Department of Mathematics, Tulane University, New Orleans, Louisiana 70118

Current address: Department of Mathematics, Princeton University, Princeton, New Jersey 08540