On Borel measures and Baire’s class $3$
HTML articles powered by AMS MathViewer
- by R. Daniel Mauldin
- Proc. Amer. Math. Soc. 39 (1973), 308-312
- DOI: https://doi.org/10.1090/S0002-9939-1973-0316640-8
- PDF | Request permission
Abstract:
Let $S$ be a complete and separable metric space and $\mu$ a $\sigma$-finite, complete Borel measure on $S$. Let $\Phi$ be the family of all real-valued functions, continuous $\mu$-a.e. Let ${B_\alpha }(\Phi )$ be the functions of Baire’s class $\alpha$ generated by $\Phi$. It is shown that if $\mu$ is not a purely atomic measure whose set of atoms form a dispersed subset of $S$, then ${B_2}(\Phi ) \ne {B_{{\omega _1}}}(\Phi )$, where ${\omega _1}$ denotes the first uncountable ordinal.References
- F. Hausdorff, Mengenlehre, 3rd ed., de Gruyter, Berlin, 1937; English transl., 2nd ed., Chelsea, New York, 1962. MR 25 #4999.
- R. Daniel Mauldin, On the Baire system generated by a linear lattice of functions, Fund. Math. 68 (1970), 51–59. MR 273363, DOI 10.4064/fm-68-1-51-59
- R. Daniel Mauldin, Some examples of $\sigma$-ideals and related Baire systems, Fund. Math. 71 (1971), no. 2, 179–184. MR 293028, DOI 10.4064/fm-71-2-179-184
- R. Daniel Mauldin, $\sigma$-ideals and related Baire systems, Fund. Math. 71 (1971), no. 2, 171–177. MR 293027, DOI 10.4064/fm-71-2-171-177 John E. Jayne, Space of Baire functions, Baire classes, and Suslin sets, Dissertation, Columbia University, New York, 1971.
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- Z. Semadeni, Spaces of continuous functions. II, Studia Math. 16 (1957), 193–199. MR 92942, DOI 10.4064/sm-16-2-193-199 S. Banach, Über analytisch darstellbare Operationen in abstrakten Raum, Fund. Math. 17 (1931), 283-295. R. Baire, Sur la représentation des fonctions discontinues, Acta. Math. 30 (1905); ibid. 32 (1909). L. Kantorovitch, Sur les suites des fonctions presque partout continues, Fund. Math. 16 (1930), 25-28. N. Luzin, Leçons sur les ensembles analytiques et leurs applications, Gauthier-Villars, Paris, 1930.
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 39 (1973), 308-312
- MSC: Primary 26A21
- DOI: https://doi.org/10.1090/S0002-9939-1973-0316640-8
- MathSciNet review: 0316640