ON BOREL MEASURES AND BAIRE'S CLASS 3

R. DANIEL MAULDIN

Abstract. Let S be a complete and separable metric space and μ a σ-finite, complete Borel measure on S. Let Φ be the family of all real-valued functions, continuous μ-a.e. Let $B_\alpha(\Phi)$ be the functions of Baire's class α generated by Φ. It is shown that if μ is not a purely atomic measure whose set of atoms form a dispersed subset of S, then $B_\alpha(\Phi) \neq B_{\omega_1}(\Phi)$, where ω_1 denotes the first uncountable ordinal.

If Φ is a family of real-valued functions defined on a set S, then, $B(\Phi)$, the Baire system of functions generated by Φ is the smallest subfamily of \mathbb{R}^X which contains Φ and which is closed under the process of taking pointwise limits of sequences. The family $B(\Phi)$ can be generated from Φ as follows: Let $B_0(\Phi) = \Phi$ and for each ordinal α, let $B_\alpha(\Phi)$ be the family of all pointwise limits of sequences taken from $\bigcup_{\gamma < \alpha} B_\gamma(\Phi)$. Thus, $B_{\omega_1}(\Phi)$ is the Baire system of functions generated by Φ, where ω_1 is the first uncountable ordinal. The Baire order of a family Φ is the first ordinal α such that $B_\alpha(\Phi) = B_{\omega_1}(\Phi)$.

Kuratowski has proved that if S is a metric space and Φ is the family of all real-valued functions on S which are continuous except for a first category set, then the order of Φ is 1 and $B_1(\Phi)$ is the family of all functions which have the Baire property in the wide sense [1, p. 323].

Let S be a complete separable metric space, let μ be a σ-finite, complete Borel measure on S and let Φ be the family of all real-valued functions on S, whose set of points of discontinuity is of μ-measure 0. In [3], it was shown that the order of Φ is 1 if and only if μ is purely atomic and the set of atoms of μ is a dispersed [7] (scattered) subset of S. Thus, as far as the Baire order problem is concerned the notion of first category and measure 0 cannot, in general, be interchanged.

The purpose of this paper is to prove that if μ is not a purely atomic measure whose atoms form a dispersed set, then the Baire order of Φ is at least 3. This will be accomplished by exhibiting a function in $B_3(C(S))$ which is not in $B_2(\Phi)$. Of course, $B_3(C(S))$ is a subfamily of $B_3(\Phi)$.

Received by the editors March 16, 1972 and, in revised form, October 18, 1972.
Key words and phrases. Borel measure, Baire function, Baire class α, dispersed set, ambiguous sets.
In what follows suppose μ is not a purely atomic measure whose set of atoms form a dispersed set. In order to prove the main theorem the following technical lemma is employed.

Lemma. There is a perfect set M of finite measure such that if V is an open set intersecting M, then $\mu(M \cap V) > 0$ and there is a set of sequences, $\{T_{np}\}_{n=1}^{\infty}, n=1, 2, 3, \ldots$, such that

1. $\{T_{1p}\}_{p=1}^{\infty}$ is a sequence of disjoint, perfect, nowhere dense subsets of M such that $T_1 = \bigcup_{p=1}^{\infty} T_{1p}$ is a dense subset of M and for each p, if V is an open set intersecting T_{1p}, then $\mu(T_{1p} \cap V) > 0$;

2. for each n, $\{T_{n+1,p}\}_{p=1}^{\infty}$ is a sequence of disjoint perfect subsets of M such that for each k, $T_{n+1,k}$ is a subset of some term of $\{T_{np}\}_{p=1}^{\infty}$ and is nowhere dense with respect to that set, and if V is an open set intersecting $T_{n+1,k}$ then $\mu(T_{n+1,k} \cap V) > 0$; and

3. for each n and p, the union of all the sets in $\{T_{n+1,k}\}_{k=1}^{\infty}$ which are subsets of T_{np} is dense in T_{np}.

Proof. Since the support of μ is a closed set, it can be decomposed into a perfect part, P, and a countable scattered (dispersed) part D. From the assumptions made concerning μ, we have that the perfect part of this decomposition is nonempty.

It follows that there is a perfect subset M of P of finite measure such that $\mu(M \cap V) > 0$.

If H is a family of disjoint, perfect, nowhere dense subsets of M, each having positive μ-measure then the family H is countable. Let G be the collection of all such families H which have the additional property that if an open set V meets some member K of H, then $\mu(V \cap K) > 0$. Let the collection G be partially ordered by inclusion. Since every totally ordered subsystem of G has an upper bound, G has a maximal element: $\{T_{1p}\}_{p=1}^{\infty}$.

Now, suppose that $T_1 = \bigcup_{p=1}^{\infty} T_{1p}$ is not dense in M. Let U be an open set which meets M such that $\text{Cl } U$ does not intersect T_1. The set $\text{Cl}(U \cap M)$ is a perfect subset of M and $\mu(\text{Cl}(U \cap M)) > 0$. It follows that there is a perfect nowhere subset K of M, lying in $\text{Cl}(U \cap M)$ such that if V is an open set which meets K, then $\mu(V \cap K) > 0$. This contradicts the maximality of the family $\{T_{1p}\}_{p=1}^{\infty}$. Thus, T_1 is dense in M.

Arguments, similar to the preceding one, can be given to complete the proof of the lemma.

Theorem. Let S be a complete separable metric space, let μ be a σ-finite, complete Borel measure on S and let Φ be the family of all real-valued functions on S which are continuous μ-a.e. If the Baire order of Φ is not 1, then the order of Φ is at least 3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. Let M be a perfect subset of S and $\{T_{n}\}_{n=1}^{\infty}$, $n=1, 2, 3, \ldots$, a set of sequences of subsets of M satisfying the conditions of the conclusion of the lemma. Let $T=\bigcap_{n=1}^{\infty} T_{n}$. The set T is an F_{σ} set and \mathcal{C}_{T}, the characteristic function of T is in Baire's class 3 ([8], [9]).

Suppose \mathcal{C}_{T} is in $B_{2}(\Phi)$. By Theorem 3 of [4], there is an F_{σ} set K such that $\mu(K)=0$ and a function g in Baire's class 2 such that if x is in $S-K$, $g(x)=\mathcal{C}_{T}(x)$. Hence, $\mathcal{C}_{T}|K'$ is in Baire's class 2 with respect to K', the complement of K. So, $T\cap K'$ is a $G_{\delta\sigma}$ set with respect to K'. There is a $G_{\delta\sigma}$ subset A of S such that $A\cap K'=T\cap K'$. Since K' is a G_{δ} set in S, $T\cap K'$ is a G_{σ} set in S.

We have $T'=T_{1}'\cup(T_{2}'-T_{3}')\cup(T_{2}'-T_{3}')\cup\cdots$. Since $T_{n}-T_{n+1}$ is a $G_{\delta\sigma}$ set, for each n and T_{1}' and K are $G_{\delta\sigma}$ sets, it follows that $T'\cap K$, the complement of $T\cap K'$, is a $G_{\delta\sigma}$ set. Thus, $T'\cap K$ is an ambiguous set of class 2.

It follows that there is a sequence $\{A_{n}\}_{n=1}^{\infty}$ of ambiguous sets of class 1 such that

$$T'\cup K = \bigcup_{n=1}^{\infty} (A_{n} \cap A_{n+1} \cap \cdots) = \bigcap_{n=1}^{\infty} (A_{n} \cup A_{n+1} \cup \cdots)$$

[6, p. 355].

Let $\{A_{n1}\}_{i=1}^{\infty}$ be the subsequence of $\{A_{n}\}_{n=1}^{\infty}$ consisting of all terms which intersect T' and for each $k>1$, let $\{A_{nk}\}_{i=1}^{\infty}$ be the subsequence of $\{A_{n}\}_{n=1}^{\infty}$ consisting of all terms which intersect $T_{k-1}-T_{k}$ and having subscript $\geq k$.

For each k, let $B_{k}=\bigcup_{i=1}^{\infty} A_{nk}$. It follows that for each k, B_{k} is an F_{σ} set, B_{k} contains T_{1}' and if $k>1$, B_{k} contains $T_{k-1}-T_{k}$. Also, it follows that $\limsup_{k\rightarrow\infty} B_{k}$ is a subset of $\limsup_{n\rightarrow\infty} A_{n}$, which is $T'\cap K$.

Let $K=\bigcup_{n=1}^{\infty} F_{n}$, where for each n, F_{n} is a closed set of measure 0 and F_{n+1} contains F_{n}.

Since B_{1} is an F_{σ} set containing T_{1}', and T_{1}' is of the first category with respect to P, there is an open set C_{1} intersecting P such that $C_{1}(C_{1}\cap P)$ is a subset of B_{1}. Since F_{1} is closed and $\mu(F_{1})=0$, $F_{1}\cap P$ is a closed, nowhere dense subset of P. Let S_{1} be a spherical ball of radius less than 1, intersecting P such that $C_{1}(S_{1}\cap P)$ is a subset of $C_{1}\cap P$ and $C_{1}(S_{1}\cap P)$ does not intersect F_{1}.

Since T_{1} is a dense subset of P, there is a positive integer n_{1} such that $T_{1n_{1}} \cap S_{1} \subset T_{1}$ intersects S_{1}. Thus, $S_{1}\cap T_{1n_{1}}$ is a dense in itself subset of $T_{1n_{1}}$, and $H_{1}=C_{1}(S_{1}\cap T_{1n_{1}})$, is a perfect subset of $T_{1n_{1}}$ such that if \emptyset is an open set intersecting H_{1}, then $\mu(\emptyset\cap H_{1})>0$.

As B_{2} is an F_{σ} set containing $T_{1}-T_{2}$ and T_{2} is of the first category with respect to H_{1}, B_{2} is not of the first category with respect to H_{1}. There is an open set C_{2} lying in S_{1} and intersecting H_{1} such that $C_{1}(H_{1}\cap C_{2})$ is a subset of B_{2}. Since F_{2} is closed and $\mu(F_{2})=0$, $F_{2}\cap H_{1}$ is a closed, nowhere dense subset of H_{1}. Let S_{2} be a spherical ball of radius less than $\frac{1}{2}$.
intersecting \(H_1 \) such that \(\text{Cl}(S_2) \) subset of \(C_2 \) and \(\text{Cl}(S_2 \cap H_1) \) does not intersect \(F_2 \).

As \(T_2 \cap T_{1n^1} \) is a dense subset of \(T_{1n^1} \), there is a positive integer \(n_2 \) such that \(T_{2n^2} \) intersects \(S_2 \cap H_1 \). Then \(T_{2n^2} \) is a subset of \(T_{1n^1} \), \(S_2 \cap T_{2n^2} \) is a dense in itself subset of \(S_2 \cap H_1 \) and \(H_k = \text{Cl}(S_2 \cap T_{2n^2}) \) is a perfect subset of \(T_{2n^2} \) such that if \(O \) is an open set intersecting it, then \(\mu(O \cap H_2) > 0 \).

Suppose \(k > 1 \) and sets \(C_i, S_i, \) and \(T_{in^1} \), \(1 \leq i \leq k \), have been defined having the following properties:

1. \(C_k \) is an open set lying in \(S_{k-1} \) such that \(\text{Cl}(H_{k-1} \cap C_k) \), where \(H_{k-1} = \text{Cl}(S_{k-1} \cap T_{k-1n^1}) \), is a subset of \(B_k \);
2. \(S_k \) is a spherical ball of radius less than \(1/k \) intersecting \(H_{k-1} \) such that \(\text{Cl}(S_k) \) is a subset of \(C_k \) and \(\text{Cl}(S_k \cap H_{k-1}) \) does not intersect \(F_k \);
3. \(n_k \) is a positive integer such that \(T_{kn^k} \) intersects \(S_k \cap H_{k-1} \).

Now, an argument analogous to the one given above to obtain the sets \(C_2, S_2, \) and \(T_{2n^2} \) may be used to obtain sets \(C_{k+1}, S_{k+1}, \) and \(T_{k+1n^1} \) having properties (1), (2), and (3) listed above where \(k+1 \) is substituted for \(k \).

The sequence \(\{H_p\}_{p=1}^{\infty} \) is a monotonically decreasing sequence of closed point sets in the complete and separable space \(S \) and the diameter of \(H_{p+1} \) is less than \(2/(p+1) \). There is a point \(w \) common to all the terms of the sequence \(\{H_p\}_{p=1}^{\infty} \). As for each \(p \), \(H_p \) is a subset of \(B_p \) and \(T_p \) and \(H_p \) does not intersect \(F_p \), \(w \) is in \(\lim \sup B_n \) and \(w \) is in \(T \cap K' \). But, \(\lim \sup B_n \) is a subset of \(T' \cup K \). This is a contradiction. This completes the argument for the theorem.

L. Kantorovitch has shown that in the special case \(S=[0,1] \) and \(\mu \) is Lebesgue measure, there is a function in Baire’s class 2, not in \(B_1(F) \) [10]. The theorem proved in this paper shows that there is a function in Baire’s class 3, not in \(B_2(F) \), if \(\mu \) is not a purely atomic measure having a dispersed set of atoms. It is not difficult to show from results in [4] that \(B_{x+1}(F) \neq B_x(F) \) if and only if there is a function \(f \) in Baire’s class \(x+1 \) such that if \(g \) is in Baire’s class \(x \), then the set \((f \neq g) \) is not a subset of an \(F_x \) set of measure 0.

Conjecture. If the Baire order of \(\Phi \), the family of all real-valued functions continuous a.e. is not 0 or 1, then it is \(\omega_1 \).

Remark. To settle this question, calls for some delicate analysis as it is well known that every measurable function \(f \) agrees with a function \(g \) in Baire’s class 2 almost everywhere; however, as has been shown here the topological nature of the set \((f \neq g) \) is very important in this process.

Question. Is there any family \(\Phi \) whose Baire order is not 0, 1, 2 or \(\omega_1 \)?

References

Department of Mathematics, University of Florida, Gainesville, Florida 32601