An extremal problem for the geometric mean of polynomials
Authors:
E. Beller and D. J. Newman
Journal:
Proc. Amer. Math. Soc. 39 (1973), 313-317
MSC:
Primary 30A06
DOI:
https://doi.org/10.1090/S0002-9939-1973-0316686-X
MathSciNet review:
0316686
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be the maximum of the geometric mean of all
th degree polynomials
which satisfy
. We show the existence of certain polynomials
whose geometric mean is asymptotic to
, thus proving that
is itself asymptotic to
.
- [1] E. Beller, Polynomial extremal problems in 𝐿^{𝑝}, Proc. Amer. Math. Soc. 30 (1971), 249–259. MR 281884, https://doi.org/10.1090/S0002-9939-1971-0281884-9
- [2] J. E. Littlewood, On polynomials ∑ⁿ±𝑧^{𝑚}, ∑ⁿ𝑒^{𝛼_{𝑚}𝑖}𝑧^{𝑚}, 𝑧=𝑒^{𝜃ᵢ}, J. London Math. Soc. 41 (1966), 367–376. MR 196043, https://doi.org/10.1112/jlms/s1-41.1.367
- [3] D. J. Newman, An 𝐿¹ extremal problem for polynomials, Proc. Amer. Math. Soc. 16 (1965), 1287–1290. MR 185119, https://doi.org/10.1090/S0002-9939-1965-0185119-4
- [4] A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A06
Retrieve articles in all journals with MSC: 30A06
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1973-0316686-X
Keywords:
Extremal polynomials,
coefficients of constant modulus,
geometric mean,
asymptotic to mean square,
zeros of polynomials,
reverse arithmetic-geometric inequality
Article copyright:
© Copyright 1973
American Mathematical Society