On splitting cotorsion radicals
HTML articles powered by AMS MathViewer
- by V. S. Ramamurthi
- Proc. Amer. Math. Soc. 39 (1973), 457-461
- DOI: https://doi.org/10.1090/S0002-9939-1973-0313323-5
- PDF | Request permission
Abstract:
For a category of modules, the notion, dual to that of a torsion radical, has been called a cotorsion radical. In this paper, the following two properties are examined for a cotorsion radical $\rho$: (1) If $N$ is a submodule of $M$ and $\rho (M) = M$, then $\rho (N) = N$. (2) The exact sequence $0 \to \rho (M) \to M \to M/\rho (M) \to 0$ splits for each module $M$.References
- Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 157984, DOI 10.1090/S0002-9947-1960-0157984-8
- John A. Beachy, Cotorsion radicals and projective modules, Bull. Austral. Math. Soc. 5 (1971), 241–253. MR 292879, DOI 10.1017/S0004972700047122
- Robert L. Bernhardt, Splitting hereditary torsion theories over semiperfect rings, Proc. Amer. Math. Soc. 22 (1969), 681–687. MR 244324, DOI 10.1090/S0002-9939-1969-0244324-2
- Stephen U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457–473. MR 120260, DOI 10.1090/S0002-9947-1960-0120260-3
- Spencer E. Dickson, A torsion theory for Abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223–235. MR 191935, DOI 10.1090/S0002-9947-1966-0191935-0
- Carl Faith, Modules finite over endomorphism ring, Lectures on rings and modules (Tulane Univ. Ring and Operator Theory Year, 1970–1971, Vol. I), Lecture Notes in Math., Vol. 246, Springer, Berlin, 1972, pp. 145–189. MR 0342541
- A. W. Goldie, Semi-prime rings with maximum condition, Proc. London Math. Soc. (3) 10 (1960), 201–220. MR 111766, DOI 10.1112/plms/s3-10.1.201
- James P. Jans, Rings and homology, Holt, Rinehart and Winston, New York, 1964. MR 0163944
- Joachim Lambek, Lectures on rings and modules, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. With an appendix by Ian G. Connell. MR 0206032
- J.-M. Maranda, Injective structures, Trans. Amer. Math. Soc. 110 (1964), 98–135. MR 163937, DOI 10.1090/S0002-9947-1964-0163937-X
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 39 (1973), 457-461
- MSC: Primary 16A62
- DOI: https://doi.org/10.1090/S0002-9939-1973-0313323-5
- MathSciNet review: 0313323